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Abstract
We consider two-player, turn-based weighted timed games played on timed automata equipped with
(positive and negative) integer weights, in which one player seeks to reach a goal location whilst
minimising the cumulative weight of the underlying path. Although the value problem for such
games (is the value of the game below a given threshold?) is known to be undecidable, the question
of whether one can approximate this value has remained a longstanding open problem. In this
paper, we resolve this question by showing that approximating arbitrarily closely the value of a
given weighted timed game is computationally unsolvable.
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1 Introduction

Weighted timed games are zero-sum games played by two players on a timed automaton
equipped with weights, where one player seeks to reach a goal location whilst minimising the
cumulative weight. Such games generalise timed games, which were introduced in the 1990s as
a means to model open systems (whose behaviours are influenced by external environments),
and to study controller-synthesis problems for real-time systems [19, 2, 17]. The introduction
of numerical weights within the formalism of timed games, initiated independently in the
early 2000s by Alur et al. [1] and Bouyer et al. [4], serves a dual purpose: first, it enables
one to ascribe a quantitative quality measure to various controllers able to achieve a given
objective, by computing the value of the corresponding game-theoretic strategy; and second,
it allows one to model various resources (energy, bandwidth, memory, etc.) and associated
costs incurred following a particular strategy. Here, one may choose to restrict weights to
have either exclusively non-negative values, or both positive and negative values. The latter
is useful when modelling resources that can both decrease and grow during an execution of
the system, such as energy. Much of the early work in this area focussed on weighted timed
games with non-negative weights, but over the last decade weighted timed games featuring
arbitrary integer (or rational) weights have been fairly extensively studied.

Another important consideration in the modelling of real-time systems via weighted timed
games is whether to adopt a turn-based or concurrent formalism. The former partitions
discrete locations into those belonging to Player Min (representing the controller, which seeks
to minimise the overall cumulative cost) and those belonging to Player Max (representing
the environment). Concurrent games, on the other hand, enable both Min and Max to
act at any given point and time (subject to the constraints imposed by the game). Both
paradigms are well established. Concurrent games are strictly more expressive than their
turn-based counterparts, but in general unfortunately suffer from not being determined (this
is in fact true even for unweighted timed games [15]). We focus on turn-based weighted
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27:2 Inapproximability in Weighted Timed Games

timed games in the present paper; since concurrent games are at least as expressive, our
main inapproximability result immediately carries over to the concurrent setting as well.

The central algorithmic problem concerning weighted timed games is the calculation of
their value, i.e., the optimal cost assuming best play for each of the players. As noted earlier,
we are exclusively considering reachability objectives in the present work: in other words,
Player Min seeks to reach a specified goal location whilst minimising the cumulative weight
of the underlying path, whereas Player Max seeks to prevent Min from reaching said goal
location and, failing that, to extract as high a cost as possible in the process. Unfortunately,
it has been known for some two decades that whether there exists a strategy for Player
Min whose value is below a given threshold is an undecidable problem [7, 3]. A related
(but subtly different) question, whether the optimal value of a weighted timed game falls
below a given threshold (the so-called value problem), is also known to be undecidable [5].
These results hold even when restricting to turn-based games with exclusively non-negative
weights. Nevertheless, various restrictions have been investigated in the literature, leading to
decidability; see, e.g., [6, 22, 16, 10, 8, 11, 9, 20, 13].

The negative results cited above have spurred researchers to examine the approximation
problem for weighted timed games: under what conditions, if any, can the value of a given
weighted timed game be approximated arbitrarily closely? As noted in [13, Sec. 12], this
is a “longstanding open problem”, and furthermore “the value of a weighted timed game
could be non approximable, though we are not aware of any such game”. Bouyer et al.
provided the first positive result in 2015, showing that the value of almost strongly non-Zeno
weighted timed games (a class of turn-based games with weights in N in which the weight
of any cycle is either null or uniformly lower bounded) is approximable [5]. This result
is all the more remarkable since the value problem for this class of games is undecidable.
Busatto-Gaston et al. extended this line of work a couple of years later to the class of divergent
and almost-divergent weighted timed games (in which the restriction to non-negative weights
is lifted but additional mild conditions are imposed) [11, 12]. For a thorough overview of
both the history and the state of the art concerning weighted timed games, we refer the
reader to the recent and comprehensive article [13].

We are now in a position to state our main contribution:

▶ Theorem 1. Given a two-player, turn-based, weighted timed game with (positive and
negative) integer weights, the problem of approximating its value arbitrarily closely is compu-
tationally unsolvable.

An important open problem is whether this result can be extended to timed games in
which only non-negative integer weights are allowed. We return to this question in Sec. 4.

2 Weighted Timed Games

Let X be a finite set of clocks. Clock constraints over X are expressions of the form
x ∼ n or x − y ∼ n, where x, y ∈ X are clocks, ∼ ∈ {<, ≤, =, ≥, >} is a comparison symbol,
and n ∈ N is a natural number. We write C to denote the set of all clock constraints over X .
A valuation on X is a function ν : X → R≥0. For d ∈ R≥0 we denote by ν + d the valuation
such that, for all clocks x ∈ X , (ν + d)(x) = ν(x) + d. Let X ⊆ X be a subset of all clocks.
We write ν[X := 0] for the valuation such that, for all clocks x ∈ X, ν[X := 0](x) = 0, and
ν[X := 0](y) = ν(y) for all other clocks y /∈ X. For C ⊆ C a set of clock constraints over X ,
we say that the valuation ν satisfies C, denoted ν |= C, if and only if all the comparisons in
C hold when replacing each clock x by its corresponding value ν(x).
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▶ Definition 2. A (turn-based) weighted timed game is given by a tuple G =
(LMin, LMax, G, X , T, w), where:

LMin and LMax are the (disjoint) sets of locations belonging to Players Min and Max
respectively; we let L = LMin ∪ LMax denote the set of all locations. (In drawings, locations
belonging to Min are depicted by blue circles, and those belonging to Max are depicted by
red squares.)
G ⊆ LMin are the goal locations.
X is a set of clocks.
T ⊆ (L \ G) × 2C × 2X × L is a set of (discrete) transitions. A transition ℓ

C,X−−−→ ℓ′

enables moving from location ℓ to location ℓ′, provided all clock constraints in C are
satisfied, and afterwards resetting all clocks in X to zero.
w : (L \ G) ∪ T → Z is a weight function.

In the above, we assume that all data (set of locations, set of clocks, set of transitions, set of
clock constraints) are finite.

▶ Remark 3. The weight function w associates integer weights to each discrete transition
and each non-goal location. It is worth pointing out that in our proof of inapproximability
(Theorem 1), only transitions may carry negative weights; all locations have weights in N.

Let G = (LMin, LMax, G, X , T, w) be a weighted timed game. A configuration over G
is a pair (ℓ, ν), where ℓ ∈ L and ν is a valuation on X . Let d ∈ R≥0 be a delay and
t = ℓ

C,X−−−→ ℓ′ ∈ T be a discrete transition. One then has a delayed transition (or
simply a transition if the context is clear) (ℓ, ν) d,t−−→ (ℓ′, ν′) provided that ν + d |= C and
ν′ = (ν + d)[X := 0]. Intuitively, control remains in location ℓ for d time units, after which it
transitions to location ℓ′, resetting all the clocks in X to zero in the process. The weight of
such a delayed transition is d · w(ℓ) + w(t), taking account both of the time spent in ℓ as
well as the weight of the discrete transition t.

As noted in [13], without loss of generality one can assume that no configuration (other
than those associated with goal locations) is deadlocked; in other words, for any location
ℓ ∈ L\G and valuation ν ∈ RX

≥0, there exists d ∈ R≥0 and t ∈ T such that (ℓ, ν) d,t−−→ (ℓ′, ν′).1
Let k ∈ N. A run ρ of length k over G from a given configuration (ℓ0, ν0) is a sequence

of matching delayed transitions, as follows:

ρ = (ℓ0, ν0) d0,t0−−−→ (ℓ1, ν1) d1,t1−−−→ · · · dk−1,tk−1−−−−−−→ (ℓk, νk) .

The weight of ρ is the cumulative weight of the underlying delayed transitions:

weight(ρ) =
k−1∑
i=0

(di · w(ℓi) + w(ti)) .

An infinite run ρ is defined in the obvious way; however, since no goal location is ever reached,
its weight is defined to be infinite: weight(ρ) = +∞.

1 In our setting, this can be achieved by adding unguarded transitions to a sink location for all locations
controlled by Min and unguarded transitions to a goal location for the ones controlled by Max (noting
that in all our constructions, Max-controlled locations always have weight 0). Nevertheless, in the
pictorial representations of timed-game fragments that appear in this paper, in the interest of clarity we
omit such extraneous transitions and locations; we merely assume instead that neither player allows
him- or herself to end up in a deadlocked situation, unless a goal location has been reached.
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27:4 Inapproximability in Weighted Timed Games

A run is maximal if it is either infinite or cannot be extended further. Thanks to our
deadlock-freedom assumption, finite maximal runs must end in a goal location. We refer to
maximal runs as plays.

We now define the notion of strategy. Recall that locations of G are partitioned into sets
LMin and LMax, belonging respectively to Players Min and Max. Let Player P ∈ {Min, Max},
and write FRP

G to denote the collection of all non-maximal finite runs of G ending in a
location belonging to Player P. A strategy for Player P is a mapping σP : FRP

G → R≥0 × T

such that for all finite runs ρ ∈ FRP
G ending in configuration (ℓ, ν) with ℓ ∈ LP, the delayed

transition (ℓ, ν) d,t−−→ (ℓ′, ν′) is valid, where σP(ρ) = (d, t) and (ℓ′, ν′) is some configuration
(uniquely determined by σP(ρ) and ν).

Let us fix a starting configuration (ℓ0, ν0), and let σMin and σMax be strategies for Players
Min and Max respectively (one speaks of a strategy profile). We write playG((ℓ0, ν0), σMin, σMax)
to denote the unique maximal run starting from configuration (ℓ0, ν0) and unfolding ac-
cording to the strategy profile (σMin, σMax): in other words, for every strict finite prefix
ρ of playG((ℓ0, ν0), σMin, σMax) in FRP

G , the delayed transition immediately following ρ in
playG((ℓ0, ν0), σMin, σMax) is labelled with σP(ρ).

Recall that the objective of Player Min is to reach a goal location through a play whose
weight is as small possible. Player Max has an opposite objective, trying to avoid goal
locations, and, if not possible, to maximise the cumulative weight of any attendant play.
This gives rise to the following two symmetrical definitions:

ValG(ℓ0, ν0) = inf
σMin

{
sup
σMax

{
weight(playG((ℓ0, ν0), σMin, σMax))

}}
and

ValG(ℓ0, ν0) = sup
σMax

{
inf
σMin

{
weight(playG((ℓ0, ν0), σMin, σMax))

}}
.

ValG(ℓ0, ν0) represents the smallest possible weight that Player Min can possibly achieve,
starting from configuration (ℓ0, ν0), against best play from Player Max, and conversely for
ValG(ℓ0, ν0): the latter represents the largest possible weight that Player Max can enforce,
against best play from Player Min.2 As noted in [13], turned-based weighted timed games are
determined, and therefore ValG(ℓ0, ν0) = ValG(ℓ0, ν0) for any starting configuration (ℓ0, ν0);
we denote this common value by ValG(ℓ0, ν0).
▶ Remark 4. Note that ValG(ℓ0, ν0) can take on real numbers, or either of the values −∞ and
+∞. Our proof of inapproximability, however, only makes use of games having finite values.

3 Inapproximability

3.1 Probabilistic Finite Automata
We establish value inapproximability for weighted timed games by reducing from an unsolvable
approximation problem for probabilistic automata. We start with some definitions.

▶ Definition 5 (PFA). A (two-letter) probabilistic automaton is given by a tuple A =
(Q, q1, F, Aa, Ab), where:

Q = {q1, . . . , qℓ} is a finite set of states.
q1 ∈ Q is the initial state.

2 Technically speaking, these values may not be literally achievable; however given any ε > 0, both players
are guaranteed to have strategies that can take them to within ε of the optimal value.
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F ⊆ Q are the accepting states.
Aa, Ab ∈ ([0, 1] ∩ Q)ℓ×ℓ are left stochastic transition matrices corresponding to letters
a and b respectively.3

Given such a probabilistic automaton A, any word w ∈ {a, b}∗ induces a probability
distribution on Q, as follows. For the empty word λ, we let the distribution D(λ) =
(1, 0, . . . , 0)T , i.e., initially all the probability mass lies in the initial state q1. Suppose
now that the distribution on Q upon reading word w is D(w), i.e., the probability Pw(qi)
of being in state qi after reading w is precisely the ith component of D(w). We then let
D(wa) = AaD(w) and D(wb) = AbD(w).

Finally, for any word w ∈ {a, b}∗, we write A(w) = Pw(F ) =
∑

q∈F Pw(q) to denote the
probability that the automaton A accepts word w.

The key result we need (the main ingredient of which is due to Condon and Lipton [14])
is the following [18, Thm. 3.3]:

▶ Theorem 6. There exists an algorithm which takes a Turing machine TM as input and
outputs a two-letter probabilistic automaton A satisfying the following:

if TM does not accept the empty string, then A accepts no word with probability exceeding
1/10, and
if TM does accept the empty string, then A accepts some word with probability at least
1/2.

Theorem 6 states, in effect, that the maximum probability with which a given probabilistic
automaton accepts some word cannot in general be approximated.4 In the remainder of this
section, we show how to exploit this fact to establish that the value of a given weighted time
game is, in turn, also not approximable in general.

3.2 Reduction Overview
Let probabilistic automaton A = (Q, q1, F, Aa, Ab), with Q = {q1, . . . , qℓ}, be fixed for the rest
of this paper. Without loss of generality, we may assume that all non-zero probabilistic tran-
sitions have weight 1/M , for some constant M ∈ N.5 In other words, Aa, Ab ∈ {0, 1/M}ℓ×ℓ.

Players Min and Max will play a weighted timed game G representing the evolution of A
as it reads a word w ∈ {a, b}∗. Min will choose the letters of w, and will simulate running
this word through A, seeking to minimise the cumulative weight of the underlying path in G.
As long as Min faithfully simulates the behaviour of A, the cumulative weight will remain
constant. Any error or ‘cheating’ by Min, however, will be ‘punishable’ by Max in the form of
an increase in the cumulative weight, the size of which will be proportional to the magnitude
of the error. Naturally, as Max seeks to maximise the cumulative weight of the path, the
dominant strategy for him will always be to seek to extract as large a cost as possible.

To this end, the game G will be equipped with two sets of clocks:

3 Left stochasticity means that each column of the matrix sums to 1.
4 Technically speaking, we should speak of a supremum.
5 This can straightforwardly be achieved via an increase in the number of states of A, as follows. Take M

to be the least common multiple of all denominators of all transition weights. For every state q of A,
create M fresh states, denoted q′

1, . . . , q′
M . And for each a-labelled transition q → s in A with weight

k/M , for all 1 ≤ i ≤ M and for all 1 ≤ j ≤ k, create a fresh a-labelled transition q′
i → s′

j having weight
1/M , and similarly for the letter b. The desired new matrices Aa and Ab are now obtained from these
fresh states and transitions.
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27:6 Inapproximability in Weighted Timed Games

Z = {z1, . . . , zℓ} ∪ {zF }; intuitively, for i ∈ {1, . . . , ℓ}, zi is intended to store the current
value of the probability of being in state qi, and zF is intended to store the probability of
being in one of the accepting states in F .
XMin = {µ1, . . . , µℓ} ∪ {µF }; intuitively, for i ∈ {1, . . . , ℓ}, µi will store Min’s guess of the
value to which to update clock zi next, and likewise for µF and zF .

In addition, G has use of an auxiliary clock t to ensure proper synchronisation, etc.
The game unfolds through a cycle of modules, as follows (see also Fig. 5):

1. Min chooses a letter (a or b) to append to the word that has been played so far.
2. Min compiles her guesses as to how the resulting probabilities of being in each state (q1

to qℓ) should then be updated, and stores the corresponding values in clocks µ1, . . . , µℓ

(and in µF for the collection of states in F ). In so doing, the game infrastructure ensures
that clocks z1, . . . , zℓ and zF remain untouched (their values at the beginning and at the
end of the relevant module are the same).

3. Max extracts a cost (an increase to the cumulative weight) for every gap between the
values guessed by Min and the actual freshly computed values of the clocks in Z, as per
the transition matrices of A.

4. The aforementioned gaps are then erased, by updating each of the clocks in Z to assume
the value of its counterpart in XMin.

5. Finally, before looping back, Min is given the opportunity to reach the goal location of G;
this transition is however only available if zF ≥ 1/2.

▶ Remark 7. Note in the above that G contains a transition in which a clock is compared
to 1/2 (rather than an integer). If desired, this is easily circumvented by considering an
equivalent weighted timed game in which all constants have been multiplied by 2. We opted
for the present half-integer formulation as this enables clock values directly to represent
probabilities, rather than twice the corresponding probabilities.

Assuming that A does accept some word w with probability at least 1/2, Min need
not make any error; she only has to guess correctly each letter of w in turn, along with
the corresponding exact distribution updates, and eventually zF will rise to 1/2 or above,
allowing her to reach the goal location at zero cumulative cost.

On the other hand, if no word is accepted by A with probability exceeding 1/10, then
Min will be forced to make errors in order to enable µF , and thus in turn zF , to reach 1/2.
Such errors will be punished by Max, extracting a total cumulative cost of at least 0.4M .
This is formalised in the following proposition, whose proof is deferred to Sec. 3.4.

▶ Proposition 8. Let A and G be as above. Then:
If there is a word w ∈ {a, b}∗ such that A(w) ≥ 1/2, then the value of G is exactly 0.
If, for all words w ∈ {a, b}∗, A(w) ≤ 1/10, then the value of G is at least 0.4M .
Since approximating the value of G to within 0.1M would enable, thanks to Theorem 6

and Proposition 8, to decide whether the Turing machine TM corresponding to A halts or
not, one concludes that weighted timed game values cannot in general be approximated,
since otherwise one could solve the Halting Problem.

3.3 Modules and Widgets
We now describe a number of modules enabling us to implement the high-level protocol
described in the previous section. In what follows, recall our assumption from Sec. 2, made
without loss of generality, to the effect that neither player allows him- or herself to be
deadlocked; in particular, if a clock constraint on a given transition requires the transition to
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Guesses

Guess
(
µ1, (XMin ∪ Z) \ {µ1}

)
· · · Guess

(
µℓ, (XMin ∪ Z) \ {µℓ}

)
Guess

(
µF , (XMin ∪ Z) \ {µF }

)

Guess(x, Y )

0 0
t := 0

⋃
y∈Y

(y = 2, y := 0)

t ≥ 1, x := 0

⋃
y∈Y

(y = 2, y := 0)

t = 2
∧

y∈Y

y < 2

Figure 1 The guessing modules enable Min to set clocks µ1, . . . , µℓ and µF to arbitrary values of
her choosing in [0, 1], whilst leaving the values of clocks in Z unchanged. Recall that blue circles
depict locations belonging to Player Min. The value 0 inside these circles, in module Guess(x, Y ),
represents the weight of these locations (i.e., the rate at which the cumulative weight changes when
control is in one of these locations). The notation ∪y∈Y (y = 2; y := 0) represents a collection
of transitions, one for each y ∈ Y . Note that any such transition, when enabled (i.e., upon the
corresponding clock y ∈ Y reaching value 2), must instantly be taken, otherwise the guard on the
transition exiting module Guess(x, Y ) could never be satisfied, and deadlock would ensue.

be taken at a certain specific time, or within a certain time interval, for otherwise the run
would deadlock (either immediately or shortly afterwards), then we assume the transition in
question is indeed taken at the correct time.

We begin with the modules Guess(x, Y ) and Guesses, depicted in Fig. 1, which enable
Min to set the clocks in XMin to arbitrary values of her choosing in [0, 1]. Here x stands for
an arbitrary clock, and Y for an arbitrary set of clocks not containing x.

The correctness of the following two statements is clear upon inspection; we therefore
omit the proofs.

▶ Lemma 9. Provided x /∈ Y and the initial values of all clocks in Y upon entering
Guess(x, Y ) lie in [0, 2), then upon exiting Guess(x, Y ) all clocks in Y have their respective
initial values, x has value in [0, 1], and the cumulative weight is unchanged.

▶ Corollary 10. Provided all clocks in XMin and Z have values in [0, 2) upon entering module
Guesses, then upon exit the values of clocks in Z are unchanged, all clocks in XMin have
values in [0, 1], and the cumulative weight is unchanged.

We now introduce modules Add−
r (x, Y ) and Add+

r (x, Y ), depicted in Fig. 2. Here r ∈ N
stands for a positive weight, x is a clock, and Y is a set of clocks not containing x. The role
of these two modules is to alter the cumulative weight, as follows:

▶ Lemma 11. Assume x /∈ Y and all clocks in {x} ∪ Y have values in [0, 2) upon entering
either Add−

r (x, Y ) or Add+
r (x, Y ). Let x̃ denote the initial value of clock x. Then upon

exiting Add−
r (x, Y ), the cumulative weight has changed by −rx̃ (a decrease), whereas upon

exiting Add+
r (x, Y ), the cumulative weight has changed by rx̃ (an increase). Moreover, all

clocks in {x} ∪ Y have recovered their initial values upon exiting either module.

Once again, the statements are clear upon inspection.
We now turn to the payment modules, depicted in Fig. 3, which enable Player Max

to extract a cost for guessing errors committed by Min. We first need to introduce some
auxiliary definitions.

CONCUR 2024



27:8 Inapproximability in Weighted Timed Games

Add−r (x, Y )

r 0
t := 0

⋃
y∈Y

(y = 2, y := 0)

x = 2∧
y∈Y

y < 2

x := 0

⋃
y∈Y

(y = 2, y := 0)

t = 2 −2r∧
y∈Y

y < 2

Add+r (x, Y )

0 r
t := 0

⋃
y∈Y

(y = 2, y := 0)

x = 2∧
y∈Y

y < 2

x := 0

⋃
y∈Y

(y = 2, y := 0)

t = 2
∧

y∈Y

y < 2

Figure 2 Modules Add−
r (x, Y ) and Add+

r (x, Y ) enable to alter the cumulative weight by −rx̃

and rx̃ respectively, where x̃ denotes the value of clock x upon entering the module and r ∈ N is a
positive weight. Upon exiting the module, x as well as all clocks in Y have recovered their initial
values. Note the negative weight of −2r on the transition exiting module Add−

r (x, Y ); this is the
only place in our weighted timed game G in which a negative weight is used.

Given a state qi ∈ Q, let ina(qi) denote the set of all states qj ∈ Q such that there is an
a-labelled non-null transition from qj to qi in A (and recall, as noted in Sec. 3.2, that all such
transitions have weight 1/M). Formally, ina(qi) = {qj ∈ Q | (Aa)i,j = 1/M}. Overloading
notation, write ina(F ) = ∪q∈F ina(q). We define inb(qi) and inb(F ) in similar fashion.

We also define outa(qi) symmetrically, representing the set of states qj such that there is
an a-labelled non-null transition from qi to qj , and similarly for outb(qi).

For qi ∈ Q, let clock(qi) = zi, and extend the clock function to sets of states in the
obvious way: clock(S) = ∪q∈Sclock(q).

We also consider the inverse function clock−1, which associates to clock zi ∈ Z \ {zF }
the state qi ∈ Q.

▶ Lemma 12. Let Y1 = {y1, . . . , yk}, Y2 be two disjoint sets of clocks, and x /∈ Y1 ∪ Y2
be another clock. Let x̃ and ỹ1, . . . , ỹk denote the initial values of clocks x and y1, . . . , yk

respectively. Provided that all clocks in {x} ∪ Y1 ∪ Y2 have values in [0, 2) upon entering
ControlM (x, Y1, Λ, Y2), the cumulative weight of this submodule is

∣∣∣Mx̃ −
∑k

i=1 ỹi

∣∣∣. Moreover,
upon exiting, all clocks (aside from t) have recovered their initial values.

▶ Corollary 13. For µ ∈ XMin and z ∈ Z, let µ̃ and z̃ respectively denote the initial values
of clocks µ and z upon entering module Paya. Assuming all clocks in XMin ∪ Z have initial
values in [0, 2) upon entering Paya, then all clocks have recovered their initial values upon
exiting Paya, and the cumulative weight has increased by

ℓ∑
j=1

∣∣∣∣∣∣Mµ̃j −
∑

i|qi∈ina(qj)

z̃i

∣∣∣∣∣∣ +

∣∣∣∣∣∣Mµ̃F −
∑

i|qi∈F

∑
j|qj∈ina(qi)

z̃j

∣∣∣∣∣∣ .

By symmetry, an entirely similar assertion holds for module Payb.

Both statements follow by inspection, making use of the previous assertions laid out in
this section.

Our last module updates the values of clocks in Z to agree with their counterparts in
XMin, thereby erasing any gaps created by errors in Min’s guesses, and setting the stage for a
fresh cycle to play out; see Fig. 4.

The following is immediate:
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ControlM (x, Y1,Λ, Y2)
where Y1 = {y1, . . . , yk}

0

Add+M (x, Y1 ∪ Y2)

Add−M (x, Y1 ∪ Y2)

Add−Λ(y1)
(y1, (Y1 \ {y1}) ∪ {x} ∪ Y2) · · · Add−Λ(yk)

(yk, (Y1 \ {yk}) ∪ {x} ∪ Y2)

Add+Λ(y1)
(y1, (Y1 \ {y1}) ∪ {x} ∪ Y2) · · · Add+Λ(yk)

(yk, (Y1 \ {yk}) ∪ {x} ∪ Y2)

t := 0

t = 0

t = 0

Paya
where {q1, . . . , qℓ} is the set of states of A

ControlM

(
µ1, clock(ina(q1)),1, (XMin ∪ Z) \ (clock(ina(q1)) ∪ {µ1})

)

· · ·

ControlM

(
µℓ, clock(ina(qℓ)),1, (XMin ∪ Z) \ (clock(ina(qℓ)) ∪ {µℓ})

)

ControlM

(
µF , clock(ina(F )),Λa, (XMin ∪ Z) \ (clock(ina(F )) ∪ {µF })

)

Figure 3 The payment modules, enabling Max to charge Min for guessing errors. x is a clock,
and Y1 and Y2 are disjoint sets of clocks, neither of which contains x. Only Paya is depicted here;
Payb is defined in entirely symmetrical fashion. The submodule ControlM (x, Y1, Λ, Y2) is entered via
a location represented as a red square, and hence belonging to Max, who can then choose between
the upper and lower paths, whichever increases the cumulative weight (the two paths carry weights
of equal magnitude but opposite signs). Note however that Max must act instantly upon entering
submodule ControlM (x, Y1, Λ, Y2), as the clock guard t = 0 would otherwise lead to deadlock.
The function Λa : Z → N is defined as follows: Λa(z) = #(outa(clock−1(z)) ∩ F ); in other words, Λa

retrieves the state of A corresponding to clock z (call it q), and counts how many non-null a-labelled
transitions into F originate from q in A. This is required in order to properly calculate the total
probability of being in F upon reading letter a.
The function 1 simply returns the value 1 on all inputs.

Update(x, x′, Y )

0 0
t := 0

⋃
y∈Y

(y = 2, y := 0)

x = 2, x := 0, x′ := 0

⋃
y∈Y

(y = 2, y := 0)

t = 2
∧

y∈Y

y < 2

Updates

Update
(
µ1, z1, (XMin ∪ Z) \ {µ1, z1}

)
· · · Update

(
µℓ, zℓ, (XMin ∪ Z) \ {µℓ, zℓ}

)
Update

(
µF , zF , (XMin ∪ Z) \ {µF , zF }

)

Figure 4 The Updates module resets the value of each clock in Z to its counterpart in XMin.
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0

0

G

Guesses

0

Updates

Paya Payb

1

2

z1 = 1zF := 0 if q1 /∈ F
ℓ∧

i=2

zi := 0

t := 0
t = 0

zF ≥ 1
2

t = 0

t := 0

t = 0 t = 0

t := 0

Figure 5 The weighted timed game G. The start location sits at the top, and all clocks have
value 0 in the initial configuration. All three blue circles have null weight (or rate), and likewise all
transitions appearing in the drawing carry null weight. The clock constraint t = 0 on edges forces
an immediate transition to the next location. The goal state (in green, bottom left) is designated by
the letter G. In order to reach it, clock zf must have value at least 1/2 in the preceding location.

▶ Lemma 14. Provided that all initial values of clocks in {x} ∪ Y lie in [0, 2) upon entering
module Update(x, x′, Y ), then upon exiting all variables in {x}∪Y have recovered their initial
values, x′ agrees with x, and the cumulative weight remains unchanged.

Likewise, assuming all initial values of clocks in XMin ∪ Z lie in [0, 2), module Updates
preserves the values of all clocks in XMin, does not alter the cumulative weight, and ensures
that every clock in Z has the same value as its counterpart in XMin upon exit.

3.4 The Reduction
Recall that we are given a probabilistic automaton A = (Q, q1, F, Aa, Ab) with set of states
Q = {q1, . . . , qℓ}, over alphabet {a, b}, with the property that every non-zero state transition
carries probability exactly 1/M for some M ∈ N. We are moreover promised that either
A accepts some word with probability at least 1/2, or A accepts no word with probability
exceeding 1/10.

Our corresponding weighted timed game G is depicted in Fig. 5. As noted earlier, the
convenient use of the half-integral constant 1/2 in one of the clock constraints is easily
circumvented if desired.

Recall the following proposition:

▶ Proposition 8. Let A and G be as above. Then:
If there is a word w ∈ {a, b}∗ such that A(w) ≥ 1/2, then the value of G is exactly 0.
If, for all words w ∈ {a, b}∗, A(w) ≤ 1/10, then the value of G is at least 0.4M .

Proof. Consider a run of G in which word w = w1 . . . wn ∈ {a, b}∗ has been played. Let
k ∈ {1, . . . , n}, and for i ∈ {1, . . . , ℓ}, let z̃i,k and z̃F,k be the respective values of clocks zi
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and zF upon exiting location
1

for the kth time, and let µ̃i,k and µ̃F,k be the respective

values of clocks µi and µF upon exiting module
2

for the kth time.
By the lemmas and corollaries from the previous section, we have, for all i and k,

µ̃i,k = z̃i,k+1, and likewise µ̃F,k = z̃F,k+1 . (∗)

Let us also introduce the following expressions:

Ei,k = z̃i,k − Pw1...wk−1(qi) and EF,k = z̃F,k − Pw1...wk−1(F ) ,

εi,k = µ̃i,k −
∑

j|qj∈inwk
(qi)

z̃j,k

M
and εF,k = µ̃F,k −

∑
i|qi∈F

∑
j|qj∈inwk

(qi)

z̃j,k

M
.

Intuitively, Ei,k is the absolute cumulative error on the probability of being in state qi after
k − 1 iterations, and εi,k is the marginal error on this probability upon reading letter wk.
Finally, we let costk be the maximum cumulative weight that Player Max can achieve upon

exiting state
1

for the kth time. For k ∈ {1, . . . , n} and i ∈ {1, . . . , ℓ}, we have:

Ei,k+1 = z̃i,k+1 − Pw1...wk
(qi)

= µ̃i,k − Pw1...wk
(qi) (by (∗))

= εi,k +
∑

j|qj∈inwk
(qi)

z̃j,k

M
− Pw1...wk

(qi)

= εi,k +
∑

j|qj∈inwk
(qi)

z̃j,k

M
−

∑
j|qj∈inwk

(qi)

Pw1...wk−1(qj)(Awk
)i,j

= εi,k +
∑

j|qj∈inwk
(qi)

z̃j,k

M
−

∑
j|qj∈inwk

(qi)

Pw1...wk−1(qj)
M

Ei,k+1 = εi,k + 1
M

∑
j|qj∈inwk

(qi)

Ej,k . (†)

Similarly:

EF,k+1 = εF,k + 1
M

∑
qi∈F

∑
j|qj∈inwk

(qi)

Ej,k . (⋆)

Let us now consider the following properties for k ∈ {1, . . . , n + 1}:

P(k) :
ℓ∑

i=1
|Ei,k| ≤

ℓ∑
i=1

k−1∑
m=1

|εi,m|

Q(k) : costk = M

ℓ∑
i=1

k−1∑
m=1

|εi,m| + M

k−1∑
m=1

|εF,m| .

We prove both properties by induction.

The base case is k = 1. Since only the start location and location
1

have been visited,
we have z̃1,1 = 1, z̃i,1 = 0 for 2 ≤ i ≤ ℓ, and z̃F,1 = 1 if q1 ∈ F , and z̃F,1 = 0 otherwise.
On the other hand, Pλ(q1) = 1, Pλ(qi) = 0 for 2 ≤ i ≤ ℓ, and Pλ(F ) = 1 if q1 ∈ F , and
Pλ(F ) = 0 otherwise.
Therefore Ei,1 = 0 for 1 ≤ i ≤ ℓ and EF,1 = 0. Likewise, cost1 = 0, whence P(1) and
Q(1) hold.
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Let k ∈ {1, . . . , n}, and assume that both P(k) and Q(k) hold. Thanks to Corollary 13,
we have:

costk+1 = costk +
ℓ∑

j=1

∣∣∣∣∣∣Mµ̃j,k −
∑

i|qi∈inwk
(qj)

z̃i,k

∣∣∣∣∣∣ +

∣∣∣∣∣∣Mµ̃F,k −
∑

i|qi∈F

∑
j|qj∈inwk

(qi)

z̃j,k

∣∣∣∣∣∣
= costk + M(

ℓ∑
i=1

|εi,k| + |εF,k|)

= M

ℓ∑
i=1

k∑
m=1

|εi,m| + M

k∑
m=1

|εF,m| , as required.

Also,

ℓ∑
i=1

|Ei,k+1| ≤
ℓ∑

i=1
|εi,k| + 1

M

ℓ∑
i=1

∑
j|qj∈inwk

(qi)

|Ej,k| , (by (†))

≤
ℓ∑

i=1
|εi,k| + 1

M

∑
i,j|(Awk

)i,j=1/M

|Ej,k|

≤
ℓ∑

i=1
|εi,k| + 1

M

ℓ∑
i=1

∑
j|qj∈outwk

(qi)

|Ei,k| .

By our assumption on A, each state has exactly M non-null outgoing transitions for each
letter. Therefore

ℓ∑
i=1

|Ei,k+1| ≤
ℓ∑

i=1
|εi,k| + 1

M

ℓ∑
i=1

M |Ei,k| .

Applying P(k),

ℓ∑
i=1

|Ei,k+1| ≤
ℓ∑

i=1
|εi,k| +

ℓ∑
i=1

k−1∑
m=1

|εi,m| =
ℓ∑

i=1

k∑
m=1

|εi,m| ,

and therefore P(k + 1) holds, concluding the induction step.

Now if w is such that A(w) = Pw1...wk
(F ) ≥ 1/2, Player Min need only correctly set

each clock µi to its expected value in every iteration, so that, for all i ∈ {1, . . . , ℓ} and all
k ∈ {1, . . . , n + 1}, we have εi,k = 0 and εF,k = 0. By Q(n + 1), the value of G is at most 0.
Since it is easily seen that the value of G cannot be negative, it must indeed be precisely 0.

If, on the other hand, A(w) ≤ 1/10, then in order for Min to reach the goal state after
playing w, it is necessary to have EF,n+1 ≥ 1/2 − 1/10 = 0.4. Using (⋆),

0.4 ≤ εF,n+1 + 1
M

∑
qi∈F

∑
j|qj∈inwn (qi)

Ej,n+1

≤ |εF,n+1| + 1
M

∑
qi∈F

∑
j|qj∈inwn (qi)

|Ej,n+1|

≤ |εF,n+1| + 1
M

∑
i,j|(Awn )i,j=1/M∧qi∈F

|Ej,n+1| .
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Recall that each state of A has exactly M non-null outgoing transitions for each letter, and
thus at most M wn-labeled outgoing transitions to a final state. We then get

0.4 ≤ |εF,n+1| +
ℓ∑

j=1
|Ej,n+1| .

Using P(n + 1),

0.4 ≤ |εF,n+1| +
ℓ∑

i=1

n∑
m=1

|εi,m| ≤
ℓ∑

i=1

n∑
m=1

|εi,m| +
n∑

m=1
|εF,m| ,

whence, using Q(n + 1),

0.4M ≤ costn+1 .

This is true for any word played. Therefore if no word is accepted by A with probability
exceeding 0.1, the value of G must be at least 0.4M , as claimed. ◀

Our main result now immediately follows:

▶ Theorem 1. Given a two-player, turn-based, weighted timed game with (positive and
negative) integer weights, the problem of approximating its value arbitrarily closely is compu-
tationally unsolvable.

4 Conclusion

We have shown that the problem of approximating the value of weighted timed games with
positive and negative weights is computationally unsolvable. An obvious question is whether
this result can be extended to games only making use of non-negative weights. This appears
to be rather difficult. Negative weights play a critical role in our construction in enabling us,
thanks to modules Add−

r (x, Y ) and Add+
r (x, Y ) (depicted in Fig. 2), to keep a cumulative

tally of the costs incurred through the repeated commission of small errors (or ‘cheating’) by
Player Min. Without the use of negative weights, it does not seem possible to implement
a ‘punishing’ mechanism for Player Max that can be re-used arbitrarily many times, and
accordingly we conjecture that in this case, the value of such games can be approximated
arbitrarily closely.

A related observation is that both the above modules require the passage of two full time
units to execute properly. It follows that over bounded time, one would need to implement
a different approach. We conjecture that the value problem for weighted timed games is
undecidable even over bounded time, but however that the corresponding time-bounded
approximation problem is solvable.6
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