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Abstract

The class of surreal numbers, denoted by No, initially proposed by
Conway, is a universal ordered field in the sense that any ordered field
can be embedded in it. They include in particular the real numbers
and the ordinal numbers. They have strong relations with other fields
such as field of transseries. Following Gonshor, surreal numbers can be
seen as signs sequences of ordinal length, with some exponential and
logarithmic functions that extend the usual functions over the reals.
No can actually be seen as an elegant (generalized) power series field
with real coeflicients, namely Hahn series with exponents in No itself.

Some years ago, Berarducci and Mantova considered derivation
over the surreal numbers, seeing them as germs of functions, in corre-
spondence to transseries. In this article, following our previous work,
we exhibit a sufficient condition on the structure of a surreal field to
be stable under all operations among exponential, logarithm, deriva-
tion and anti-derivation. Motivated, in the long term, by computabil-
ity considerations, we also provide a non-trivial application of this
theorem: the existence of a pretty reasonable field that only requires
ordinals up to e, which is far smaller than w{¥ (resp. wy), the first
non-computable (resp. uncountable) ordinal.
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1 Introduction

Conway introduced in [Con00] the class of surreal numbers. They were later
on popularized by Knuth [Knu74], and then formalized later on by Gonshor
[Gon8&6], and by many other authors. The general initial idea is to define a
class of numbers, based on a concept of “simplicity”. This permits to obtain
a real closed field that both contains the real numbers and the ordinals, as
this provides an unification of Dedekind’s construction of real numbers in
terms of cuts of the rational numbers, and of von Neumann’s construction
of ordinal numbers by transfinite induction in terms of set membership.
Following the alternative presentation from Gonshor in [Gon86|, a surreal
number can also be seen as an ordinal-length sequence over {+, —}, that
we call a signs sequence. Basically, the idea is that such sequences are or-
dered lexicographically, and have a tree-like structure. Namely, a + (respec-
tively —) added to a sequence = denotes the simplest number greater (resp.
smaller) than = but smaller (resp. greater) than all the prefixes of x which
are greater (resp. smaller) than z. With this definition of surreal numbers,
it is possible to define operations such as addition, substraction, multipli-
cation, division, obtaining a real closed field. Following Gonshor |[Gon86],
based on ideas from Kruskal, it is also possible to define consistently classi-
cal functions such as the exponential function and the logarithmic function
over No, and to do analysis of this fields of numbers.

It can be considered as “the” field that includes “all numbers great and small”
[Ehr12]. In particular, any divisible ordered Abelian group is isomorphic to
an initial subgroup of No, and any real closed field is isomorphic to an initial
subfield of No |[Ehr01, Theorems 9 and 19|, [Con00, Theorems 28 and 29].
This leads to the fact that it can be considered as “the” field that includes
“all numbers great and small” [Ehri2|. No can also be equipped with a
derivation, so that it can be considered as a fields of transseries [BM18al.
See example [MMI7] for a survey of fascinating recent results in all these
directions.

More concretely, No can also be seen as a field of (generalized) power series
with real coefficients, namely as Hahn series where exponents are surreal
numbers themselves. More precisely, write K ((G)) for the set of Hahn series
with coefficients in K and terms corresponding to elements of G, where K
is a field, and G is some divisible ordered Abelian group: This means that
K ((G)) corresponds to formal power series of the form s = > s a,t9,
where S is a well-ordered subset of G and a, € K. The support of s is
supp(s) = {g € S| a, # 0} and the length of the serie of s is the order
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type of supp(s). The field operations on K ((G)) are defined as expected,
considering elements of K ((G)) as formal power series. We have No =
R ((No)).

Our previous work [BG22| has shown that some acceptable subfields of No
are stable by both exponential and logarithm. This fields are built with some
restriction on ordinals allowed in the ordinal sum. In the current article, we
pursue the work by exhibiting some acceptable subfields of No are stable by
both exponential and logarithm, derivation and anti-derivation. We actually
provide some sufficient condition on the structure of a surreal field to be
stable under all these operations among exponential, logarithm, derivation
and anti-derivation, and use these to derive such subfields.

More precise statements Given some ordinal v (or more generally a
class of ordinals), we write K ((&)),, for the restriction of K ((G)) to formal
power series whose support has an order type in v (that is to say, corresponds
to some ordinal less than ). We have of course No = R ((N0))q,4. In this
point of view, e-numbers, i.e ordinals ), such that w* = ), play a major
role as they are such limit on ordinal we can accept in our fields.

As we will often play with exponents of formal power series considered in
the Hahn series, we propose to introduce the following notation: We denote

RY =R ((T),

when A is an e-number and I' a divisible Abelian group.

As a consequence of MacLane’s theorem (Theorem [3.5| below from [Mac39),
see also [AlI&T, section 6.23]), we know that ]R)\NO" is a real-closed field when
u is a multiplicative ordinal (i.e. 4 = w*” for some ordinal a) and \ an
e-number.

Furthermore:
Theorem 1.1 ([vEOL, Proposition 4.7]). Let A be an e-number. Then

1. The field Noy can be expressed as
(1.1) No, = JRY™,
o
where (1 ranges over the additive ordinals less than A (equivalently, p

ranges over the multiplicative ordinals less than X ).

2. Noy s a real closed subfield of No, and is closed under the restricted
analytic functions of No.
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3. No, = RTOA if and only if X\ 1s a reqular cardinal.

Actually, even if we always can write No, as an increasing union of fields by
Equation , and even if No, is stable under exponential and logarith-
mic functions (Theorem none of the fields in this union has stability
property beyond the fact that they are fields. Indeed:

Proposition 1.2 (|[BG22, Proposition 1.5]). R/\NO“ is never closed under

exponential function for u < A\ a multiplicative ordinal.

In our previous work [BG22|, we studied stability of subfields of No by ex-
ponential and logarithm. For the sake of effectiveness and representations
for ordinal Turing machines, we kept ordinals as small as possible to iden-
tify natural subfields stable by both these functions. This paper will keep
the same spirit and we will give an example construction that only involves
ordinals up to &,, which is much smaller than w;, the first uncountable
ordinal, and even w{¥, the first non-computable ordinal.

To achieve that purpose, we will have to handle carefully the e-numbers that
are involved. Recall that there is some enumeration (¢,)qcorqa0f e-numbers:
Any e-number ordinal X is ¢, for some ordinal a.

Definition 1.3 (Canonical sequence defining an e-number). Let A be an

e-number. Ordinal A can always be written as A = sup (ep) for some

B<va
canonical sequence, where v, is the length of this sequence, and this

sequence is defined as follows:

o If A\ = gy then we can write g = sup{w,w”,w*”,...} and we take
w,w’,w*", ... as canonical sequence for gy. Its length is w, and for

B <A egis w' where there are [ occurrences of w in the exponent.

o If A\ = ¢,, where « is a non-zero limit ordinal, then we can write

A = supeg and we take (g3) as the canonical sequence of \. Its

B<a o

length is @ and for 8 < «, eg = €5.

o If A =¢,, where « is a successor ordinal, then we can write

€a— E€a— fa—1
A= Sup{ga—la Ea-1 17 €a-1 ! PIE }
Eq— .
and we take e, 1,E0_15"1, €q_15°"1 “7', ... as the canonical sequence
fa—1
of A. Its length is w, and for 8 < w, eg = €41~ where there are (3

occurrences of £,_1 in the exponent.
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. . . €
For example, the canonical sequence defining &, is &g, 9%, °, ..., the
canonical sequence defining ¢, is €g, €1, €9, . . ., the canonical sequence of £,
is €9,61,€9,.-.,E0,Ewil, - and the canonical sequence of .51 is

€ Ewofw2
Ew2y Ew2 wzvSwQ w2 PR

Definition 1.4. Let I' be an Abelian subgroup of No and A be an e-number

whose canonical sequence is (eg),_. . We denote I'™ for the family of group

B<A
(I's) s, defined as follows:

o Iy =T;

g((Ts)%)

p and the set

e I['5,; is the group generated by the groups I's, R
{h(ai) > orw® € FB} where g and h are Gonshor’s functions as-
i<v
sociated to exponential and logarithm (see Section [5| below for some
details);

e For a limit ordinal number 5, I's = Y T,.
v<B
When considering a family of set (.S;);c;, we denote

Rg\sv:)iel _ U Rfi

i€l

In particular, REM = U ]REi
i<ya

Remark 1.5. By construction, if I' C I then R{™ € RI'™.

The idea behind the definition of I'" is that at step i + 1 we add new
elements to close ]REI' under exponential and logarithm. The reason why we

)% )
add Rgg( %) to 'z rather than ]Ri« %) is that we want to keep control
on what we add in the new group. In our previous work |[BG22| we came
up with the following three statements:

Lemma 1.6 ([BG22, Lemma 5.7]). Write I'™ = (I'g),_ , and let

L= {expn z,In, x

rel, neN,
JyeR, IPeP(y) IkeN Pk)==x

we have for all 1 < vy,

L= {expn x,In,

rel,neN,
JyeRyYIPeP(y) IkeN Pk)=u
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Corollary 1.7 ([BG22, Corollary 5.8|). Let I' be an Abelian additive sub-
group of No and

L= {expnm,lnnaz

rel,neN,
JyeR, IPeP(y) IkeN Pk)==x

Then,

L= {expnm,lnnm

rel, neN,
Wy eR"IPecP(y)IkeN Pk)==z

Theorem 1.8 ([BG22, Theorem 1.10]). Let I' be an Abelian subgroup of No
and X be an e-number, then REM 15 stable under exponential and logarithmic

functions.

With such a notion, we managed to make a link between the two types of

field involved in Theorems and More precisely, the fields RY™ are
part of the fields No,.

Theorem 1.9 ([BG22, Theorem 1.11]). Noy =, R}\NOH,V" where |1 ranges
over the additive ordinals less than \ (equivalently, p ranges over the mul-

tiplicative ordinals less \),

Notice that now, No, is expressed as a increasing union of fields, each of

them closed by exp and In. Indeed, by definition, if y < p/ then No, C No,,

. A No ,T™
and Remark [1.5[ gives RY> " C R, ™

A
Finally, we proved that each field ]R/\NO“ is interesting for itself since none
of them is No,. More precisely:

Theorem 1.10 (|[BG22, Theorem 1.12|). For all e-number X, the hierarchy

in previous theorem is strict:

NOMT)‘ NOM/ T
Ry C R,

for all multiplicative ordinals i and p' such that w < p < p' < A.

In this article, we will go further and investigate the case of stability under

derivative and anti-derivative.

Main Theorem 1.11. Let o be a limit ordinal and (I's),_,, be a sequence
of Abelian subgroups of No such that

o Vi<a Vy<p I',CTg

o Vi <« wTe)h K Keg
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eVi<a Vy<eg ko, EwWS

eVi<a dnp<es Voews NR(z) < ng

Teg
Then \JR:] is stable under exp, In, 0 and anti-derivation (see section

B<a
).

Actually, we mainly focus on properties of the derivation suggested by Be-
raducci and Mantova and its anti-derivation. In particular, we establish
various bounds that are useful to find fields stable under derivation and
anti-derivation. We also prove the following:

Proposition 1.12. For any x € No, the set Pp(z) is well-ordered with

w(NR(z)+1)

order type 5 < w* . In particular,

v(0x) < e V@D

In the above proposition and the above theorem, NR is the nested trunca-
tion rank which is defined in Definition and v(x) is the length of the
series of the normal form the surreal number z (see Definition [3.17). The
previous proposition is essential to control derivatives of surreal numbers
and then get field stable under derivation. To handle anti-derivation, we

came up with the following proposition:

Proposition 1.13. Let x be a surreal number. Let v be the smallest ordinal

such that k_, <% P(kp) for all path P € Pp(z). Let \ be the least e-

number greater than NR(x) and . Then | supp ®(x) (see Definition|6.55
ieN
15 reverse well-ordered with order type less than W

+2

Thanks to Propositions and [1.13] we will be able to prove our main
theorem:

Organization of the paper This article is organized as follows. Section
is a quick reminder of some lemmas about order types that will be useful
at the end of this article. Section || recalls basics of the concepts and detf-
initions of the theory of surreal numbers, and fixes the notations used in
the rest of the paper. Section {4 recalls what is known about the stability
properties of various subfields of No according to their signs sequence repre-
sentation or Hahn series representation. In Section 5] we recall the definitions
and properties of exponential and logarithm. In Section [6], we recall some
existing literature about log-atomic numbers and derivation and established



8 O. Bournez and (). Guilmant

some result about the nested truncation rank, a notion of rank related to
the structure of the surreal numbers and to log-atomic numbers. Finally, in
Section [7] we build surreal fields that are stable under exponentiation, log-
arithm, derivation and anti-derivation. We also show how this construction
can lead too an example which only uses “small” ordinals, which is good
from a Computability Theory point of view.

2 Order type toolbox

In this section, we quickly take a look at some useful lemma about order
type of well ordered sets. In all the following, circled operators (@, ®) stand
for usual operations over ordinal numbers. The usual symbols (+, x) stand
for natural operations, which are commutative.

Our first proposition is about the union of well ordered sets. This result is
already knows but we still provide a proof since it is hard to find it in the

literature.

Lemma 2.1 (Folklore). Let T be a totally ordered set, A C T be a well-
ordered subset with order type o. Let g € T'. Then the set AU {g} is well
ordered with order type at most o + 1.

Proof. We prove it by induction on .

e If & =0 then AU {g} has only one element, and then has order type
l=a+1.

o If « = v+ 1is a successor ordinal. Let u the largest element in A.
If u < g then AU {g} has indeed order type at most a + 1. If not,
then, by induction hypothesis, (A \ {u})U{g} has order type at most
7+ 1=a. Then AU{g} = ((A\ {u}) U{g}) U{u} has order type at
most a + 1.

e If v is a limit ordinal. If ¢ is larger than any element of A, then AU{g}
has order type a + 1. If not, let ap € A such that ag > g. Fora € A
such that a > ag set

B,={g}U{d € A| d <a}

Since « is limit, we have AU {¢} = |J B

a>ap
and each of the element in the union is an initial segment of AU {g}.
We also denote «, the order type of the set {a' € A| ¢ <a}. In
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particular, o, < «. Using induction hypothesis, B, has order type
at most «, + 1. Then, since we have an increasing union of initial

segments, the order type of AU {g} is at most
sup{a,+1]| a>ap} =sup{+1] ¢ <a}=«

since « is a limit ordinal.
We conclude thanks to the induction principle. O

Proposition 2.2 (Union of well-ordered sets, folklore). Let I" be a totally
ordered set A, B C I' be non-empty well-ordered subsets with respective order
types o and 3. Then the subset AU B is well ordered with order type at most
a+f.

Proof. AU B is well-ordered. Indeed, if we have an infinite decreasing se-
quence of AU B, then we can extract either an infinite one for either A or
B which is not possible. It remains to show the bound on its order type.
We do it by induction over o and f.

o If o« = 3 =1, then AU B has at most two elements. Then, its order
type is at most 2 = a + [.

e If o or [ is a successor ordinal. Since both cases are symmetric, we
assume without loss of generality that 5 = v+ 1. Let u be the largest
element of B and C' = B\ {u}. Then, by induction hypothesis, AUC
has order type at most a+~. Using Lemma 2.1} we get that the order
type of AUB is at most a +v+1=a+ .

e If o and (8 are limit ordinal. A or B must be cofinal with AU B. For
instance say it is A. For a € A, let

A, ={d €A d <a} and B,={beB| b<a}

We have AuB= |JA,UB,

acA
Since A is cofinal with A U B, it is an increasing union of initial
segments. Let a, be the order type of A, and 5, the one of B,. We
have o, < o and S, < . By induction hypothesis, A, U B, has order

type at most a, + 5,. Then A U B has order type at most
sup{a, + 6. | a € A} <a+p

We conclude the proof using the induction principle. [
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We know move to addition of well ordered subset of a group. Again this
result in know but its proof is not easily findable in the literature.

Proposition 2.3 (Folklore). Let I' be an ordered Abelian additive monoid
and A, B C T be non-empty well-ordered subsets with respective order types

a and (. Then the subset A+ B={a+b| a€ A B € B} is well ordered
with order type at most af3.

Proof. We do it by induction over a and f3.

e If o« = 3 =1, then A+ B has only one element, then has order type
1=ap.

e If o or [ is not an additive ordinal. Let say 8 = v+ ¢ with 7,0 < .
We choose v, d such that v+ § = v @ d. Let B; the initial segment
of length v of B. Let By = B\ By. By has order type 0. Then, by
induction hypothesis, A + B; has order type at most oy and A + By
has order type at most «d. Then, using Proposition 2.2 A + B has
order type at most ay + ad = af.

e If both o and [ are additive ordinals. Assume A 4+ B has order type
more than af. Let a +b € A+ B such that the set C defined by

C:={ceA+B| c<a+b}

has order type af. Let
Ay={d €A| d <a}and By={b € B| V <b}
and ag and Sy their respective order types. We have
C C (Ag+ B)U(A+ By)

Using induction hypothesis and Proposition C has order type at
most ool + afy. Since ap < a and [y < 3, we have apf < af and
afy < af. a and [ being additive ordinal, af is itself an additive or-
dinal and then C has order type less than a3, what is a contradiction.
Then A + B has order type at most «af.

We conclude thanks to the induction principle. O

In the same idea, we can take a look at a well ordered non-negative subset
of an ordered group. The proof is less easy so we refer to [Wei09] for the
details.
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Proposition 2.4 ([Wei09, Corollary 1]). Let I' be an ordered Abelian group
and S C 'y be a well-ordered subset with order type o. Then, (S), the
monoid generated by S in T is itself well-ordered with order type at most w®
where, if the Cantor normal form of « s

n
a = wn,
i=1

n
~ !
then a =)y wn,
i=1

and

8 = B+1 if B is an e-number
B otherwise
In particular, (S) has order type at most w*® (commutative multiplication).

Finally, we consider finite sequences over a well ordered set.

Theorem 2.5 ([dP77, Theorem 3.11] and [Sch20), Theorem 2.9]). Let (X, <)
be a well ordered set with order type . Let X™ be the set of finite sequences
over X. Let B the order type of X*. We have
Wi o is finite
B<w™ ife<a<e+4w for some e-number ¢

(e .
w® otherwise

w

3 Surreal numbers

We assume some familiarity with the ordered field of surreal numbers (refer
to [Con00, [Gon86| for presentations) which we denote by No. In this section
we give a brief presentation of the basic definitions and results, and we fix
the notations that will be used in the rest of the paper.

3.1 Order and simplicity

The class No of surreal numbers can be defined either by transfinite re-
cursion, as in [Con00] or by transfinite length sequences of + and — as
done in [Gon86|. We will mostly follow |[Gon86|, as well as [BM18a| for their
presentation.

We introduce the class No = 2<9% of all binary sequences of some ordinal
length o € On, where On denotes the class of the ordinals. In other words,
No corresponds to functions of the form z : a — {—,+}. The length
(sometimes also called birthday in literature) of a surreal number x is the
ordinal number o = dom(z). We will also write o = |z[,_ (the point of this
notation is to “count” the number of pluses and minuses). Note that No is
not a set but a proper class, and all the relations and functions we shall
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define on No are going to be class-relations and class-functions, usually
constructed by transfinite induction.

We say that z € No is simpler than y € No, denoted x C y, i.e., if x is a
strict initial segment (also called prefix) of y as a binary sequence. We
say that x is simpler than or equal to y, written t C y, if t Cyor x =y
i.e., x is an initial segment of y. The simplicity relation is a binary tree-
like partial order on No, with the immediate successors of a node = € No
being the sequences x_ and x, obtained by appending — or + at the end
of the signs sequence of x. Observe in particular that the simplicity relation
C is well-founded, and the empty sequence, which will play the role of the

number zero, is simpler than any other surreal number.

We can introduce a total order < on No which is basically the lexicographic
order over the corresponding sequences: More precisely, we consider the
order — < [J < 4+ where [ is the blank symbol. Now to compare two signs
sequences, append blank symbols to the shortest so that they have the same
length. Then, just compare them with the corresponding lexicographic order
to get the total order <.

Given two sets A C No and B C No with A < B (meaning that a < b for
all a € A and b € B), it is quite easy to understand why there is a simplest
surreal number, denoted [A | B] such that A < [A | B] < B. However, a
formal proof is long. See [Gon86, Theorem 2.1] for details. If x = [A | B,
we say that Such a pair [A | B] is representation of x.

Every surreal number = has several different representations x = [A | B| =
[A"| B'], for instance, if A is cofinal with A’ and B is coinitial with B’. In
this situation, we shall say that [A | B] = [A" | B’] by cofinality. On the
other hand, as discussed in [BMI8al, it may well happen that [A | B] =
[A”| B'] even if A is not cofinal with A" or B is not coinitial with B’. The
canonical representation z = [A | B] is the unique one such that AU B
is exactly the set of all surreal numbers strictly simpler than x. Indeed it
turns out that is A = {yC x| y<z} and B = {yC x| y > x}, then
x=[A] B].

Remark 3.1. By definition, if z = [A | B] and A <y < B, then z C y.

To make the reading easier we may forget {} when writing explicitly A and
B. For instance [z | y] will often stand for [{z} | {y}] when z,y € No.
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3.2 Field operations

Ring operations +, on No are defined by transfinite induction on simplicity
as follows:
vy =2 +y,x+y | 2" +y,xz+9]
'y +axy — 2y 'y + xy” — xy”

", ",/

Y = x”y + fL’y// — a2y x”y + xy’ — a2y
where 2/ (resp. y') ranges over the numbers simpler than x (resp. y) such
that ' < x (resp. ¥ < y) and 2” (resp. y”) ranges over the numbers simpler
than x (resp. y) such that x < 2” (resp. y < ¥”); in other words, when
x = [2' | 2" and y = [y | ¥"] are the canonical representations of x and
y respectively. The expression for the product may seem not intuitive, but
actually, it is basically inspired by the fact that we expect (z—2')(y—y') > 0,

(z—2")y—y") >0, (z—2")(y—y") <0and (x —2")(y — ') <O0.

Remark 3.2. The definitions of sum and product are uniform in the sense
of [Gon86, page 15]. Namely the equations that define z+y and zy does not
require the canonical representations of x and y but any representation. In
particular, if x = [A | B] and y = [C' | D], the variables 2/, 2", ¢/, y" may
range over A, B, C, D respectively.

It is an early result that these operations, together with the order, give No
a structure of ordered field, and even a structure of real closed field (see
[Gon8&6, Theorem 5.10]). Consequently, there is a unique embedding of the
rational numbers in No so we can identify Q with a subfield of No. Actually,
the subgroup of the dyadic rationals m /2" € Q, with m € Z and n € N,
correspond exactly to the surreal numbers s : k — {—,+} of finite length
ke N.

The field R can be isomorphically identified with a subfield of No by send-
ing © € R to the number [A | B] where A C No is the set of rationals
(equivalently: dyadics) lower than z and B C No is the set of (equivalently:
dyadics) greater than x. This embedding is consistent with the one of Q
into No. We may thus write Q C R C No. By |[Gon86, page 33|, the length
of a real number is at most w (the least infinite ordinal). There are however
surreal numbers of length w which are not real numbers, such as w itself or
its inverse that is a positive infinitesimal.

The ordinal numbers can be identified with a subclass of No by sending
the ordinal « to the sequence s : o — {+,—} with constant value +.
Under this identification, the ring operations of No, when restricted to
the ordinals Ord C No, coincide with the Hessenberg sum and product



14 O. Bournez and (). Guilmant

(also called natural operations) of ordinal numbers. Similarly, the sequence
s:a — {+,—} with constant value — corresponds to the opposite (inverse
for the additive law) of the ordinal a, namely —«. We remark that z € Ord
if and only if 2 admits a representation of the form 2 = [A | B] with B = &,
and similarly z € —Ord if and only if we can write z = [A | B] with A = @.
Under the above identification of Q as a subfield of No, the natural numbers
N C Q are exactly the finite ordinals.

3.3 Hahn series
3.3.1 Generalities

Let K be a field, and let G be a divisible ordered Abelian group.

Definition 3.3 (Hahn series [Hah95]). The Hahn series (obtained from
K and G) are formal power series of the form s = > _¢a,t?, where S is
a well-ordered subset of G and a, € K. The support of s is supp(s) =
{g €S| a, # 0} and the length of s is the order type of supp(s).

We write K ((G)) for the set of Hahn series with coefficients in K and terms
corresponding to elements of G.

Definition 3.4 (Operations on K ((G))). The operations on K ((G)) are
defined in the natural way: Let s = Y gagt?, 8" = > g ayt?, where S, 5’
are well ordered.

ges

o s+ = desw/ (ag+a;) t9, where a, = 0 if g ¢ S, and aj, = 0 if

g¢s
o 58 =3 pbgt?, where T' = {g1 + g2 | 1 € SAgo €5}, and for
each g € T, we set b, = > by, - by,

91€5,92€85'|g1+92=9
Hahn fields inherits a lot of from the structure of the coefficient field. In
particular if K is algebraically closed, and if G is some divisible (i.e. for any
n € N and g € G there is some ¢’ € G such that ng’ = g) ordered Abelian
group, then the corresponding Hahn field is also algebraically closed. More
precisely:

Theorem 3.5 (Generalized Newton-Puiseux Theorem, Maclane [Mac39]).
Let G be a divisible ordered Abelian group, and let K be a field that is
algebraically closed of characteristic 0. Then K ((G)) is also algebraically

closed.

As noticed in [AlI87], we can deduce the following:
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Corollary 3.6. Let G be a divisible ordered Abelian group, and let K be a
field that is real closed of characteristic 0. Then K ((G)) is also real closed.

Proof. K is real closed. That is to say that —1 is not a square in K and that
K[i] is algebraically closed. Notice that K[i]((G)) = (K((G))) [i]. Therefore,
Theorem ensures that (K((G)))[i] is algebraically closed. Also, —1 is
not a square in K((G)). Therefore, K((G)) is real closed. O

3.3.2 Restricting length of ordinals

In this article, will often restrict the class of ordinals allowed in the ordinal
sum, namely by restricting to ordinals up to some ordinal A. We then give
the following notation:

Definition 3.7 (K ((G)),). Let A be some ordinal. We define K ((&)),, for
the restriction of K ((G)) to formal power series whose support has an order
type in v (that is to say, corresponds to some ordinal less than 7).

Theorem 3.8. Assume 7 is some e-number. Then K ((G)),, is a field.

Proof. This basically relies on the observation that the length of the inverse
of some Hahn series in this field remains in the field: This is basically a
consequence of Proposition O

We also get:

Proposition 3.9 ([vEOL, Lemma 4.6]). Assume K is some real closed field,
and G is some abelian divisible group. Then K ((G)),, is real closed.

Actually, this was stated in [vEQI, Lemma 4.6] for the case K = R, but the
proof ony uses the fact that R is real-closed.

3.3.3 Normal form theorem for surreal numbers

Definition 3.10. For a and b two surreal numbers, we define the following

relations:
e a < bifforall n € N, nla| < |b|.
e a = b if there is some natural number n € N such that |a| < nl|b|.
e axbifa<bandbd<a.

With this definition, < is a preorder and < is the corresponding strict pre-
order. The associated equivalence relation is < and the equivalence classes
are the Archimedean classes.
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Theorem 3.11 ([Gon86, Theorem 5.1|). For all surreal number a there is

a unique positive surreal x of minimal length such that a < x.

The unique element of minimal length in its Archimedean class has many
properties similar to those of exponentiation:

Definition 3.12. For all surreal number a written in canonical representa-
tion a = [a’ | a”], we define

w = {O,{nw“l nEN} ‘ {Zinw“” nENH

we call such surreal numbers monomials.
Actually this definition is uniform (JGon86, Corollary 5|) and therefore, we

can use any representation of a in this definition. Another point is that we
can easily check that this notation is consistent with the ordinal exponentia-
tion. More precisely, if a is an ordinal, w® is indeed the ordinal corresponding
to the ordinal exponentiation (see [Gon86, Theorem 5.4]). Finally, as an-
nounced, this definition gives the simplest elements among the Archimedean
classes.

Theorem 3.13 (|Gon86, Theorem 5.3]). A surreal number is of the form
w® if and only if it is simplest positive element in its Archimedean class.

More precisely,

Va € No (JceNo a=w’) = (WeNo bxa = al]|b)
Elements of the form w® are by definition positive and have the following
property:

Proposition 3.14 (|Gon86, Theorem 5.4]). We have
e =1
e Va,b € No wiw® = wt?

Thanks to this definition of the w-exponentiation, we are now ready to
expose a normal form for surreal numbers which is analogous to the Cantor

normal form for ordinal normal.

Definition 3.15 (|Gon86, Section 5C, page 59|). For v an ordinal number,
(73);<, asequence of non-zero real numbers and (a;),_, a decreasing sequence

of surreal numbers, we define > r,w® inductively as follows:
<v
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o If v =0, then Y rw* =0
<V

o If v =141 then Y rw® = > rw® + ryw™

<v i<v’

e If v is a limit ordinal, » r;w® is defined as the following bracket:

i<v
V< v
S >Ty

I/, < v a; a,,r
8<?"y/} ' {an + sw
Note that if 0 is seen as a limit ordinal, then both definition are consistent.

[{ ZT w4 sw

i<v’

<v’

Theorem 3.16 (|[Gon86, Theorem 5.6]). Every surreal number can has a

unique writing of the form Y r;w®. This expression will be called its normal
i<v

form.

Note that if a is an ordinal number, then its normal form coincides with its

Cantor normal form. In such a sum, elements r,w® will be called the terms

of the series.

Definition 3.17. The length of the series in the normal form of a surreal

number z is denoted v(z).
Definition 3.18. A surreal number a in normal form a = > rw® is
i<v
e purely infinite if for all i < v, a; > 0. No,, will stand for the class
of purely infinite numbers.

e infinitesimal if for all i < v, a; < 0 (or equivalently if a < 1).
e appreciable if for all i < v, a; <0 (or equivalently if a < 1).

If v/ < v is the first ordinal such that a; < 0, then >  rw® is called the
i<v!

purely infinite part of a. Similarly, if / < v is the first ordinal such that
a; <0, > rw® is called the infinitesimal part of a.

V' <i<v
Theorem 3.19 (|Gon86, Theorems 5.7 and 5.8]). Operation over surreal
numbers coincides with formal addition and formal multiplication over the

normal forms. More precisely,

me‘“ + Zsiwbi = Z taw®

1<v i<v’ zeNo

where
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o t, =1; if i is such that a; = x and there is no i such that b; = x.
o t, =s; if 1 is such that b; = x and there is no @ such that a; = x.
e t, =1;+5s; if i is such that a; = x and j is such that b; = x

and

. . ’ .
1< <V z€No { ;<<5/ ‘ ai+bj:$}

We stated that every surreal number has a normal form. However, in the
other direction, it is possible to get back the sign expansion from a normal

form.

Definition 3.20 (Reduced sign expansion, Gonshor, [Gon86|). Let x =
> r;w® be a surreal number. The reduced sign expansion of a;, denoted af
<V

is inductively defined as follows:

® ay = ap

e For ¢ > 0, if a;(d) = — and if there is there is j < ¢ such that for
v <6, aj(y) = ai(7y), then we discard the minus in position ¢ in the

sign expansion of a;.

e If : > 0 is a non-limit ordinal and (a;_;)_ (as a sign expansion) is a
prefix of a;, then we discard this minus after a;_; if r;_1 is not a dyadic

rational number.

More informally, a; is the sign expansion obtained when copying a; omitting
the minuses that have already been treated before, in an other exponent of
the serie. We just keep the new one brought by a;. However, the later case

give a condition where even a new minus can be omitted.

Theorem 3.21 ([Gon86|, Theorems 5.11 and 5.12). For « an ordinal and
a surreal a, we write |a[: ]|y for the (ordinal) number of pluses in al: ]
the prefix of length of o of x. Then,

e The sign expansion of w® is as follows: we start with a plus and the
for any ordinal o < |a| we add W'+ occurrences of a(a) (the sign

in position « in the signs sequence of a).

e The sign expansion of wn s the signs sequence of w® followed by
Wl (n — 1) pluses.
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1
e The sign erpansion of wa2—n 1s the sign expansion of w® followed by

wlel+n minuses.

e The sign expansion of wr for r a positive real is the sign expansion
of w® to which we add each sign of r w!+ times excepted the first plus

which 1s omitted.

e The sign expansion of wr for r a negative real is the sign expansion

of w*(—r) in which we change every plus in a minus and conversely.

o The sign expansion of > rw® is the jurtaposition of the sign expan-
i<v

. o]
stons of the w%r;

As a final note of this subsection, we give some bounds on the length of

monomials and terms.
Lemma 3.22 ([vEOIL, Lemma 4.1|). For all surreal number a € No,
lal, < |w?],_ < wlel—

Lemma 3.23 (|Gon86, Lemma 6.3]). Let x = > rw® a surreal number.
i<v
We have for all i < v, |rw®

o Sl

3.3.4 Hahn series and surreal numbers

As a consequence of Theorems and the field No in in fact a Hahn
serie field. More precisely,

Corollary 3.24. The fields No and R((tN°)) are isomorphic.

Proof. Sending t* to w™® for all surreal number a, we notice that all the
definitions match to each other. [

Notice that we have of course No = R ((N0))g,q4-

4 Surreal subfields

4.1 Subfields defined by Gonshor’s representation

Let No, denote the set surreal number whose signs sequences have length
less than A where A is some ordinal. We have of course No = (J, .o, NOa.

Van den Dries and Ehrlich have proved the following:
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Theorem 4.1 ([vEO0I, vdDEO1|). The ordinals A such that Noy is closed
under the various fields operations of No can be characterised as follows:
e No, s an additive subgroup of No iff A = w® for some ordinal «.
e No, is a subring of No iff X\ = w*" for some ordinal «.

e No, is a subfield of No iff w* = \.

The ordinals A satisfying first (respectively: second) item are often said
to be additively (resp. multiplicatively) indecomposable but for the sake
of brevity we shall just call them additive (resp. multiplicative). Multi-
plicative ordinals are exactly the ordinals A > 1 such that ur < A whenever
w,v < A The ordinal satisfying third item are called e-numbers. The
smallest e-number is usually denoted by ¢y and is given by

g0 := sup{w,w”, W, .. ).

Remark 4.2. Since rational numbers have length at most w, we have that
if A is multiplicative, then No, is a divisible group.

If A is an e-number, No, is actually more than only a field:

Theorem 4.3 ([vEO0L, vdDEOI|). Let A be any e-number. Then Noy is a
real closed field.

4.2 Subfields defined from Hahn’s series representation

As we will often play with exponents of formal power series consided in the
Hahn series, we propose to introduce the following notation:

Definition 4.4. If X is an e-number and I' a divisible Abelian group, we
denote

As a consequence of Proposition [3.9] we have

Corollary 4.5. RTO“ 15 a real-closed field when 1 is a multiplicative ordinal
and \ an e-number.

This fields are somehow the atoms constituting the fields No,.

Theorem 1.1 ([vE0I, Proposition 4.7]). Let A be an e-number. Then
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1. The field Noy can be expressed as
(1.1) No, = | JRY™,
n

where p ranges over the additive ordinals less than A (equivalently, u

ranges over the multiplicative ordinals less than X ).

2. Noy s a real closed subfield of No, and is closed under the restricted

analytic functions of No.
3. No)y = RTOA if and only if X is a regular cardinal.

Remark 4.6. The fact that if ) is not a regular cardinal, then No, # ]Rl;loA
can be seen as follows: Suppose that A is not a regular cardinal. This means
that we can take some strictly increasing sequence (iq)a<p that is cofinal
in A with 8 < A. Then Za<ﬁ wHe s in R/\No* by definition, but is not in
No,.

5 Exponentiation and logarithm

5.1 Gonshor’s exponentiation

The field surreal numbers No admits an exponential function exp defined

as follows.

Definition 5.1 (Function exp, [Gon86, page 145|). Let x = [2' | 2”] be the
canonical representation of x. We define inductively

0, exp(a’) [z — 2'],., exp(z’) exp(z”)
exp(:c”)[a: o $H]2n+1 [$/ _ $]2n+17 [ZL‘” _ I]Qn—f-l

exp T =

where n ranges in N and

T T
[ =1+ 44—

with the further convention that the expressions containing terms of the
form [y]any1 are to be considered only when [y]s, 11 > 0.

It can be shown that the function exp is a surjective homomorphism from
(No, +) to (No”",) which extends exp on R and makes (No, +, ,exp) into
an elementary extension of (R, +,,exp) (see [vdDMMO94, Corollaries 2.11
and 4.6], [vEO1] and [Res93|). As exp is surjective, and from its properties,
it can be shown that it has some inverse In : No” — No (called logarithm).
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Definition 5.2 (Functions log, log,, exp,). Let In : No”” — No (called
logarithm) be the inverse of exp. We let exp,, and In,, be the n-fold iterated
compositions of exp and In with themselves.

We recall some other basic properties of the exponential functions:

Theorem 5.3 (|[Gon86, Theorems 10.2, 10.3 and 10.4]). For all r € R and

¢ infinitesimal, we have

oo pk oo ok
expr = ) ,— and expe= ) —
=TT R =YY
> (r+e)*
and exp(r +¢) = exp(r) exp(e) = Y ( i )
k=0 K

Moreover for all purely infinite number x,
exp(z + 7 +¢) = exp(z) exp(r +¢)

Proposition 5.4 (|[Gon86, Theorem 10.7]). If x is purely infinite, then

expx = w® for some surreal number a.
More precisely:

Proposition 5.5 (Function g, [Gon86, Theorem 10.13]). If = is purely in-

finite, i.e. x =Y rw with a; > 0 for all i, then
<v

3 riwd(ai)
exXpr = wi<v ,

for some function g : No”® — No. Function g satisfies for all z,

g(x) = [c(x),9(z') | g(=")]

c(z

where c(x) is the unique number such that w*® and x are in the same

Archimedean class [Gon86, Thm. 10.11] (i.e. such that x < w® ), where 2’

ranges over the lower non-zero prefizes of x and x" over the upper prefizes
of .

5.2 About some properties of function g

Proposition 5.6 ([Gon86, Theorem 10.14]). If a is an ordinal number then

(a) = a+1 if X<a<\+w for some e-number \
g\ = a otherwise

Note that in the previous proposition, a # 0 since g is defined only for

positive elements.
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Proposition 5.7 ([Gon86, Theorem 10.15|). Let n be a natural number and
b be an ordinal. We have g(27"w™") = —b+ 27"

Proposition 5.8 (|Gon86, Theorems 10.17, 10.19 and 10.20|). If b is a
surreal number such that for some e-number ¢;, some ordinal o and for all
natural number n, €, +n < b < a < €41, then g(b) = b. This is also
true if there is some ordinal o < eg such that for all natural number b,
nwl <b<a<e.

Proposition 5.9 ([Gon86, Theorem 10.18|). If ¢ < b < e+ n for some
e-number ¢ and some integer n. In particular, the sign expansion of b is
the sign expansion of € followed by some sign expansion S. Then, the sign
expansion of g(b) is the sign expansion of € followed by a + and then S. In
particular, g(b) = b+ 1.

It is possible to bound the length of g(a) depending on the length of a.
Lemma 5.10 ([vEOL, Lemma 5.1|). For all a € No, |g(a)|,_ < |a|],_ +1.

The function ¢ has a inverse function, h defined as follows

h(b) = lo, h(b)

This expression is uniform (see [Gon86|) and then does not depend of the

h(b"), w—b}

n

expression of b as [0/ | b"].
Corollary 5.11. If a is an ordinal number then h(—a) = w1,

Proof. Tt is a direct consequence of Proposition and the fact that h =
-1
g . O]

As for g, we can bound the length of h(a) in function of the length of a.
Lemma 5.12 (JAVDDVDHI19, Proposition 3.1]). For all a € No we have,

< CU|a\+7-&—1

h(a)l

We will also prove another lemma, Lemma [5.14] that looks like the previous
lemma but that is better in many cases but not always. To do so we first
prove another technical lemma.

Lemma 5.13. For all ¢, denote c the surreal number whose signs sequence
is the one of ¢ followed by a plus. Assume g(a) < ¢ for all a T w® such that
0 < a < w Then g(w) is ci if ¢ does not have a longest prefiz greater
than itself, otherwise, g(w®) = ¢’ where " is the longest prefix of ¢ such
that " > c.
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Proof. By induction on c:

e For ¢ =0, g(w°) = g(1) = 1 whose signs sequence is indeed the one of
0 followed by a plus.

e Assume the property for b C c. Assume g(a’) < ¢ for all @’ C w® such
that 0 < @’ < w°. Then,

g(w?) = [c| g(a")]

where a” ranges over the elements such that ¢” C w® and a” > w°.

> First case: ¢ has a longest prefix ¢y such that ¢y > c¢. Then,

for all a” such that o” T w® and d” > w® d” = w®, hence
g(a") > cp. Since ¢ < ¢y < g(a”), the simplicity property ensures
g(w®) C ¢p C c. Then g(w°) is some prefix ¢” of ¢, greater than c.
We look at w®”. Notice that for all b C ¢ is such that 0 < b < ¢,
b cand b < ¢, hence g(b) < ¢ < ¢”. Therefore we can apply the
induction hypothesis to ¢ and g(w®") is c{ if the signs sequence
of ¢ does not end with only minuses, otherwise, g(w®") is the last
(strict) prefix of ¢’ greater than ¢”.

. First subcase: g(w®") = ¢//. If there is some b such that ¢’ C
b C cand b > ¢ then g(wP) is a prefix of g(w®) = ¢”. But,
" = g(we) < g(w’) < g(w") = L. Then ¢ must be a strict
prefix of g(w®) which is a contradiction. Then ¢” is indeed
the last strict prefix of ¢ greater than c.

- Second subcase: g(w®") is the last (strict) prefix of ¢’ greater
than ¢”. If there is some b such that ¢’ T b C c and b > ¢,
then g(w?) is a prefix of g(w®) = . Since g(b) < g(c”), g(b)
is prefix of ¢ smaller than ¢”. But this contradicts the fact
that g(w®) > g(w®) = ¢”. Therefore, ¢’ is the last prefix of ¢

greater than c.

Second case: ¢ does not have a longest prefix greater than c.
Then,

g(w) = e | 9]

where ¢ ranges over the prefixes of ¢ greater than c. Let d C ¢

such that d > c. Then there is d; or minimal length such that
d C dy C ¢ and d; > c. By minimality of d;, d is the longest
prefix of d; greater than d;. As in the first case, we can apply the
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induction hypothesis on d; and get g(w®) = d. Therefore, again
by induction hypothesis,

g(w) =[c| " d] =c]|

where ¢ ranges over the prefixes of ¢ greater than c¢. We finally
conclude that g(w°) = c;.

]

In the following we denote & the usual addition over the ordinal numbers
and ® the usual product over ordinal numbers.

Lemma 5.14. For alla >0, |a], _ < ‘wg(a)‘Jr_ ® (w+1).
Proof. We proceed by induction on |al, _.
e For a =1, g(a) = 1 and we indeed have 1 < w?.
e Assume the property for all b C a. Let ¢ such that w® =< a. Then
g(a) =[e,g(a’) | g(a")]
We split into two cases:
> If there is some ay C a such that ap < a and g(ag) > ¢ then
9(a) = [9(a") | g(a"]

and if S stand for the signs sequence such that a is the signs
sequence of ag followed by S, g(a) is the signs sequence of g(ao)
followed S. Let « the length of S. Therefore using Theorem [3.21]

‘wg(a) ‘+_ > ‘wg(ao)}+_ o) (w ® a)
and then,

W@ @ (w+1) > |wl)]

> }wg(ao)|

_®w@ ‘wg(a0)|+_@a
Rw+1)Ba

+- +

+_

and by induction hypothesis on ay,

‘wg(a)‘Jr_ ®(w+1)>|agl,_  ®a=lal,_
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> Otherwise, for any ay C a such that ag < a, g(ag) < c. Therefore,

g(a) = [c| g(a")]

Also, since a > 0, we can write the signs sequence of a as the one
of w* followed by some signs sequence S. If S contains a plus,
then there is a prefix of a, ag such that ag < a and still ¢ < w*
and then g(ap) > ¢ what is not the case by assumption. Then, S
is a sequence of minuses. If S is not the empty sequence, let «
be the length of S. Then the signs sequence of g(a) is the one of
g(w°) followed by S. Hence,

9], > |o],_e s

As in the previous case, but using the induction hypothesis on
w°,

’wg(a)hi Rw+1)> W, Da=]al,_

Now if S is the empty sequence, a = w®. Applying Lemma [5.13
to ¢ we get that either g(a) = ¢4 or g(a) is the last prefix of ¢
greater than c. If the first case occurs then a is a prefix of w9(@
and then ‘wg(“)‘+_ > |a|,_. Now assume that the second case
occurs. Then for any b such that g(a) C b C ¢, b < c. If for all
V' T bsuch that b < b, g(b') < b, then Lemmal5.13| applies. Since
b has a last prefix greater than itself, g(a), g(w®) = g(a) and we

b« w = a.

reach a contradiction since b < ¢ and therefore w
Then for all b such that g(a) C b C ¢, there is some ' T b, b’ < b
such that g(w”) > b. Since the signs sequence of b consists in the
one of g(a) a minus and then a bunch of pluses, and since g(w")
must also a a prefix of ¢, g(w”) C g(a) C b. Therefore to ensure
g(b') > b, we must have g(w®) > g(a). Since w® is a prefix of a
lower than a, it is a contradiction. Therefore, there is no b such
that g(a) C b C cand b < ¢, and finally, the signs sequence of ¢ is
the one g(a) followed by a minus. In particular, g(a) and ¢ have

the same amount of pluses, say «. Then, using Theorem [3.21]

_ +1
lal,_ = |wg(“)|+7 D w®

< [o59],_ | ®],_w= |9, @w

+ +-

< ‘wg(a)hi ® (w+1)

The induction principle concludes.
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]

Corollary 5.15. For all a > 0 and for all multiplicative ordinal greater
than w, if |a|l,_ > p, then |w9(‘1)|+7 > .

Proof. Assume the that ‘wg(a)‘Jr_ < p. Then using Lemma , <
‘wg(“)hi ® (w+ 1). Since p is a multiplicative ordinal greater than w, we
have w -+ 1 < p. p is a multiplicative ordinal, hence |w9(®) ‘+— Rw+1)<p
and we reach a contradiction. [

5.3 Gonshor’s logarithm

We already know that a logarithm exist over positive surreal numbers. Nev-
ertheless we were very elliptical and we now get deeper into it.

Definition 5.16. For a surreal number a in canonical representation a =

[a' | a"], we define

n €N neN
nw” +n| dCa mw” —n| d'Ca
Wt — a <a a<a’
o neN néeN
a// a,,—(l 1Zi a/ (l—(l, /
lnw* —w = d'Ca Inw® +w = adCa
i a<a’ a <a

As often with this kind of definitions, the uniformity property holds.

Lemma 5.17 ([Gon86, Lemma 10.1]). The definition of Inw® does not re-
quire a in canonical representation.

Proposition 5.18 (|Gon86, Theorem 10.8]). For all surreal number a, In w®

s purely infinite.

Purely infinite numbers are a special case in the definition of the exponential
function. We can state the previous definition of In is consistent with the

one of exp.

Theorem 5.19 (|[Gon86, Theorem 10.9]). For all surreal number a,
exp lnw® = w*

Theorem 5.20 (|Gon86, Theorem 10.12|). For all surreal number a,

Inw*" = WM
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The above theorem is not actually stated like this in [Gon86] but this state-
ment follows from the proof there.

As a consequence of Theorems and and Propositions and [5.5]

we have

Corollary 5.21. For all surreal number a = > rw®, we have
i<v

Inw® = anh(‘“)
<v
Finally, since for appreciable numbers exp is defined by its usual serie, In(1+

x) is also defined by its usual serie when x in infinitesimal. More precisely,

Definition 5.22. For x an infinitesimal,

o i—1,.1

In(l+z) = Z(_l)—x

- 2
=1

And thanks to Theorem [5.3

Corollary 5.23. Let a = Y rw® a positive surreal number. Then
1<v

T
Ina =Inw*® +1 In{1 E —L®iao
na nw™? +Inry+ n( + . w >

1<i<y 0

where the last term is defined in Definition[5.22.

5.4 Stability of No, by exponential and logarithm

We first recall some result by van den Dries and Ehrlich.

Lemma 5.24 ([vE0L Lemmas 5.2, 5.3 and 5.4]). For all surreal number
a € No,

e |expal, _ < e

° “nwa’Jri < w4w\a|+_\(z|+_

e |lnal, _ < R

Corollary 5.25 (|[vE0L, Corollary 5.5]). For A an e-number, Noy is stable
under exp and In.

We have
Theorem 5.26 (|[BG22, Theorem 1.3]). The following are equivalent:
e No, is a subfield of No stable by exp, and In

e No, is a subfield of No

e )\ is some e-number.
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5.5 A hierarchy of subfields of No stable by exponential
and logarithm

In this subsection we recall our previous work on a hierarchy of surreal
subfields stable under exponential and logarithm.
We start by Theorem [I.§ repeated here for readability:

Theorem 1.8 (|[BG22, Theorem 1.10]). Let I be an Abelian subgroup of No
and X\ be an e-number, then ]REM 15 stable under exponential and logarithmic

functions.

This result is actually a consequence of a more general proposition which is
the following.

Proposition 5.27 (|[BG22, Proposition 5.1|). Let A be an e-number and
(I'i);er e a family of Abelian subgroups of No. Then R&Fi)
exp and In if and only if

el s stable under

Jri = URi((Fim

iel iel
Note that a consequence of Proposition [5.27] is also the following:

Corollary 5.28 (|[BG22, Corollary 5.2|). Let A be an e-number and T' be
an abelian subgroup of No. Then R} is stable under exp and In if and only

if T = RS

This result is quite similar to Theorem but in the particular very par-

ticular case where |J G = I'. This apply for instance when I' = {0}. In
Gel'm™
this case, we get R} = R. If \ is a regular cardinal we get an other example

considering RY = I' = No,.

Theorem enables us to consider a lot of fields stable under exponential
and logarithm and enabled us to prove that we can express No) as a strictly
increasing hierarchy of fields stable under exp and In.

Theorem 1.9 ([BG22, Theorem 1.11]). Noy =, RANO“’TA, where p ranges
over the additive ordinals less than \ (equivalently, p ranges over the mul-

tiplicative ordinals less \),
Theorem 1.10 ([BG22, Theorem 1.12]). For all e-number X, the hierarchy
in previous theorem 1is strict:

NOMTA NOH/T/\
]RA g RA

for all multiplicative ordinals i and p' such that w < p < p' < A.
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6 The class of log-atomic numbers, derivation
and anti-derivation

6.1 Log-atomic numbers

We now introduce the concept of log-atomic numbers. Log-atomic num-
bers were first introduced by Schmeling in [Sch01l, page 30] about transseries.
Such number are basically number whose series of iterated logarithm have
all length 1.

Definition 6.1 (Log-atomic). A positive surreal number z € No’, is said
log-atomic ff for all n € N, there is a surreal number a,, such that In, z =
w?®. We denote LL the class of log-atomic numbers.

For instance, w is a log-atomic number and we can check that for all n € N,
In,w = wor. Log-atomic number are the number we cannot divide into
simpler numbers when considering exponential and logarithm and are the

fundamental blocs we end up with when writing © = > r;w® and then
i<v
each w® as w% = expux; with z; a purely infinite number and then doing

the same thing with each of the x;s. The use of the word “simpler” is not
innocent. Indeed, log-atomic numbers are also the simplest elements for
some equivalence relation introduced by Beraducci and Mantova [BM18b).

Definition 6.2 ([BM18bl Definition 5.2]). Let x,y be two positive infinite

surreal numbers. We write

o = ="y iff there are some natural numbers n, k such that

1
exp,, (E In,, y) <z <exp, (kln,y)

Equivalently, we ask that the is a natural number n such that In, z <

In,, y. For such n we notice that In,  ; x ~ In, 1 y.

o © <%y iff for all natural numbers n and k,

< (11 )
r<exp, | gy
k

Equivalently, we ask that for all n € N, In, z < In,, .

o a <L b iff there are some natural numbers n and £,

1
x < exp, (E In, y)

Equivalently, we ask that for some n € N, In, x < In,, y.
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Log-atomic number are closely related to this equivalence relation since they
representatives of each equivalence classes.

Proposition 6.3 (|[BM18b, Propositions 5.6 and 5.8]). For all positive in-
finite x there is unique log-atomic number y € 1L such that y C x and such
that y <* x. In particular, if v,y € L with x < y then x < y.

This proposition shows in particular that not even log-atomic are represen-
tative of the equivalence classes of =<', they also are the simplest element
(i.e the shortest in terms of length) in their respective equivalence classes.
This make them a canonic class of representatives.

As we can parametrize additive ordinal, multiplicative ordinal or even e-
numbers (for which a generalization for surreal numbers exists in Gonshor’s
book [Gon86|), we can parametrized epsilon numbers by a an increasing
function \.. A first conjecture was to consider k-numbers which are defined
by Kuhlmann and Matusinski as follows:

Definition 6.4 (JKMI4, Definition 3.1]). Let = be a surreal number and

write it in canonical representation as x = [z | z”]. Then we define
Ry = [R, eXpn Ryt ’ lnn K,xn]

Intuitively, z < y iff every iterated exponential of k, is less than , and we
try to build them as simple as possible. As an example, it is quite easy to
see that ko = w, k1 = w* ~ and Ky = gy. It was conjectured that L consists
in k-number and there iterated exponentials and logarithms. As shown by
Berarducci and Mantova, it turns out that it is not true. They then suggest
a more general map which is the following:

Definition 6.5 (|[BMI18D, Definition 5.12]). Let z be a surreal number and

write it in canonical representation x = [2/ | 2”]. Then we define
1
exp,, z In,, Ay

Proposition 6.6 (|[BMI18b. Proposition 5.13 and Corollary 5.15]). The
function x — X\, is well defined, increasing, satisfies the uniformity property
and if ¥ <y then A, <F \,.

Ar = |R,exp,, (kln, A,r)

where n, k € N*.

Proposition 6.7 (|[BM18bl, Proposition 5.16]). For every x € No with
r > R there is a unique y € No such that x < A\, and N\, C z. In
particular, X\, is the simplest number in its equivalence class for <*. As a
consequence, Ano = L.
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Moreover, the A map behaves very nicely with exponential and logarithm.

Proposition 6.8 (JAVDDVDHI19, Proposition 2.5|). For all surreal number
T,
exp Az = Azi1 and Inh, = g

—a

Lemma 6.9 (JAVDDVDHI9, Lemma 2.6|). For all ordinal o, \_,, = w*

Lemma 6.10 (JAVDDVDHI19, Aschenbrenner, van den Dries and van der
Hoeven, Corollary 2.9|). For all ordinal number «,

w—w®a

R_o = )\—w®o¢ =w

6.2 Nested truncation rank

6.2.1 Definition

Log-atomic number are the base case (up to minor changes) of a notion of
rank over surreal numbers, the nested truncation rank. As expected, it is
based on some well partial order. This one has been defined by Berarducci
and Mantova as follows:

Definition 6.11 (|[BM18b, Definition 4.3]). For all natural number n € N,
we define the relation <,, as follows:
e Writing y <o « if any only if y = > rw® and z = > rw® with

i<v’ 1<V
V' < wv. We say that y is a truncation of z.

No

o Let x = > rw™ Since w™° = exp(Noy,), we can write

1<v
r = Zri exp(z;)
i<v
where exp(x;) = w®. For a surreal number y, we say y <,.1 x if there
is v < v and vy <, x,, such that

y =Y riexp(w;) +sign(r,) expy’
<v!

We say that y is a nested truncation of x.

We also write y < z is there is some natural number n such that y <, x.
We also introduce the corresponding strict relations <, and <.

Definition 6.12 (Nested truncation rank [BMI8b, Definition 4.27]). The
nested truncation rank of x € No” is defined by

NR(z) =sup{NRy+1| y<z}

By convention, we also set NR(0) = 0.
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6.2.2 Properties

We know investigate some properties of the nested truncation rank. More
precisely, we provide compatibility properties with the operations over sur-
real numbers and bounds on some particular nested truncation ranks. First

of all, the nested truncation rank is unaffected by the exponential.

Proposition 6.13 (|[BM18b, Proposition 4.28|). If v € No, then
NR(exp) = NR(7)

Corollary 6.14. For all a € No*, NR(a) = NR (—a)

Proof. Without loss of generality, we assume that a > 0. Then

NR (a) = NR (Ina) (Proposition |6.13
= NR(—explna) (Proposition |6.13
= NR (—a)

]
1
Corollary 6.15. For all a € No*, NR(a) = NR (5)
Proof.
1 1
NR (5) = NR (ln 5) (Proposition |6.13)
= NR(—1Ina)
= NR (Ina) (Corollary [6.14))
= NR(a) (Proposition |6.13)

O

Lemma 6.16. For all v € No, NR(z) = 0 iff either x € R or & = £\*!

for some log-atomic number .

Proof. @ Note that if z € R then there is no y € No such that y < x.
Therefore NR(z) = 0. Now assume that there is some r = +\*!
with A € L such that NR(x) # 0. Therefore there is some y € No
such that y <x. Let n € N minimal such that there is y € No and
A € L such that y <, £A*!. Note that since £\*! is a term, n > 0.
Then y = £ exp(£y’) with ' <,_1 In XA € L. But this contradicts the
minimality of n. hence, for all A € L, NR (£\*!) = 0.

@ Assume NR(z) = 0 and z is not a real number. If z is not a term,
then there is y <9  and in particular NR(x) > 1, what is impossible.
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Therefore there is some » € R* and some xz; € J such that © =
rexp(zy). If r # £1 then sign(z) exp(z’) <x what is again impossible.
Hence, © = + exp(z). Proposition ensures that NR(z1) = 0. We
then can apply the same work to z; so that there is some x5 € J
such that z; = +exp(xs). By induction, we can always define z,, =
+exp(x,y1) with x,.1 € J. For n > 1 we have x,, € J, therefore
ZTpt1 > 0. In particular

Vn > 2 Ty = exp(Tpy1)

So, for all n € N, In, x5 is a monomial, this means that x, € L. We

also have
= texp (Eexpry) = % (expy(w2)) ™!

Since exp, ro € L, we have the expected result.

Lemma 6.17. Let x = > rw® and r € R*,a € No such that for all i < v,
1<v
rw® < w*. Then

NR(z 4+ rw®) = NR(z) ® 1 & NR(w*) ® 1,241

where the @ is the usual sum on ordinal numbers.

Proof. Let y<x + rw® Then y < x or y = x + sign(r) exp(d) with 6 <lnw?®
or, if r # £1, y = x + sign(r)w®. Let
A={y| y<Jx} and B = {x +sign(r)exp(d) | 6 alnw*}

_{ g r==l1

and x +sign(r)w® r# £l

One can easily see that

Vye A Y eB YW el y<y Ny<y" Ny <y’
We now proceed by induction on NR(w?®).

e If NR(w”) = 0, using Lemma either w® = £A*! for some log-
atomic number A or a = 0. In both cases, there is no § <lnw?.
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NR(z 4+ rw®) =sup{NR(y)+ 1| y € AUC}

=sup [ { NR(y)+1 | yax
—_——

<NR(z)
U{NR(z) + 1} U{NR(y)+ 1| ye C}

B NR(z)+1 r==l1
B {NR(J& + sign(r)w®) r# +1
_ [NR(z)+1 r==£1
B {NR(x) +2 r#£+l

NR(z + rw®) = NR(z) + 1 + NR(w®) + 1,44

e For heredity now. Let d <Inw®. Since Inw?® is a purely infinite number,
so is 8. Then exp ¢ is of the form w? for some surreal b € No. Moreover
NR(w® = NR(9) < NR(Inw?) = NR(w®)
Proposition [6.13] Proposition [6.13]

From the induction hypothesis, we have that for any ¢ <1lnw?®
NR(z + sign(r) exp(d)) = NR(x) & 1 & NR(exp d)

NR(z +rw*) =sup{NR(y)+ 1| y € BUC}

= sup NR(z + sign(r)expd) +1 | d<lnw®

<NR(z+sign(r)w®)

U{NR(y)+1| ye C}

=sup{NR(z) ® 1 ® NR(expd) @1 | d<alnw} + 1,14
= NR(z) @1 @ sup{NR(expd) +1| d<alnw’} & 1,.1,
NR(z +rw®) = NR(z) ® 1 ® NR(w*) & 1,241

]

Lemma 6.18. Let © = > rw® such that for all 1 < v, r; = £1 and
i<v
w% = A for some \ € L. Then

NR(z) = {

v+1 v<w
vV v>uw

Proof. If v < w, we just proceed by induction using Lemma Now we

prove by induction the remaining.

o [{ v =w. Then
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1/’<1/}:

e Assume for w < vV < v, NR (Zriw‘“) = /. If v is a non-limit

<v!
ordinal, then Lemma [6.17] concludes. Otherwise

V< 1/} =
]

NR(r) = sup { NI (S ) +1

<v’

sup{V' +2 | V<wl=w

NR(z) = sup {NR (z nwai> +1

<v!

sup{V/+' |w<V <v}=v

Lemma 6.19. Let v = > ri(z)w%® € No. Then v < NR(z) + 1. The
i<v
equality stands iff = s a finite sum of numbers of the form +y™' with y € L

and possibly one non-zero real number.

Proof. Using induction on v it is trivial. For 0, v = 0 = NR(0). Now assume
v # 0. Then, by definition

NR(z) +1 >sup{NR(y) +1| y<oz y#0}+1 >
induction hypothesis
sup{v(y) | ywz y#0}+12>v(z)
Now assume v(x) = NR(z) + 1 and write x = > r,w®. We use induction

i<v(zx)
on No* with the well partial order <.

e If z is a monomial, v(z) = 1 and NR(z) = 0. That is z = +y*! for
some y € L or z € R (using Lemma [6.16)).

e If x is not a monomial. Assume r;w® ¢ +IL* UR* with i minimal for

that property. Let 2’/ = ) rjw®.
j<i

> If i = 0 then NR(rpw®) > 1. A simple induction shows that
NR (Z riw“") > 1/ for all v/ < v. What is a contradiction.
<v’

> Otherwise 2’ # 0 and 2’ <y . If NR(2') + 1 # i then NR(z') > ¢
and
NR(z) > NR(z') @ (vo1i) > v
where v © i is the ordinal such that ¢ ® (v © i) = v. what is
a contraction. Then by induction hypothesis, i = NR(2') + 1 is
finite. Now consider y < 2’ + rw®. Then y <y 2’ (y <, «’ with
n > 1 is impossible since 2’ has only terms in +L*' U R) or
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y = 2’ +sign(r;) exp(d) with § < In(w®). Since r;w% ¢ £LFUR,
there is such a y of the later form such that y # =’ + r;w®. From
Lemma[6.17] we have NR(y) > NR(z')+1. Then NR(z'+r;w®) >
NR(y) + 1 > NR(2’) + 2. By induction we then can show that
NR(z) > NR(2' + riw*) & (v — (i + 1)) >
NR(@)@2@(ve(iel)=idl+wve(ial)=v

and we get a contradiction.

Then, every term of z is in £L*! UR and by definition only one can
be a non-zero real number. It remains to show that there are finitely

many terms, what follows from Lemma [6.18]

Remark 6.20. For all z € No, NR(z) < |z, _

Proof. Assume the converse and take z with minimal length that contradicts
the property then there is y <« such that NR(y) > |z|,_. Since |z|, _ >
ly|._, then y reaches contradiction with the minimality of x. O

Proposition 6.21 (|[BM18b, Berarducci and Mantova, Proposition 4.29]).
For all a € No*, for all r € R\ {£1}, we have NR(rw®) = NR(w*) + 1.

Proposition 6.22 (|[BM18D, Berarducci and Mantova, Proposition 4.30]).
Let © = ) rw* € No*. Then

1<V
o Vi<v NR(rw*) < NR(x)
o Vi<v i+1<v= NR(rw") < NR(z)

We can also say something about the nested truncation rank of a sum of

surreal number.

Lemma 6.23. For a,b € No, NR(a + b) < NR(a) + NR(b) + 1 (natural
sum of ordinal, which correspond to the surreal sum).

Proof. We prove it by induction on the couple (NR(a), NR(b)).

e If NR(a) = NR(b) = 0 then, by Lemmal6.16|both a, b are in L= UR.
If a € Rorb e R then NR(a +b) < 1 by Lemmas [6.17] and |6.16]
Otherwise, either a = £b and then NR(a +b) = 0 or a # £b and
Lemma ensure that NR(a + b) = 1.
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e Assume the property for all x,y such that
(NR(ZL’), NR(y)) <lew (NR(CL), NR(b))

Then, consider y <a + b. Write a + b = > _rjw®.

<v

> Ify = > rw® with v/ < v. Let 2z, be the series constituted
<v’

of the terms of a which asolute value is infintely larger than

w%. We define the same way zp. Then y = 2z, + 2. We have

(NR(24),NR(z2p)) <iex (NR(a),NR(b)) since there is term with

order of magnitude w®’ in either a or b. Then, applying induction

hypothesis,
NR(y) < NR(z,) + NR(z) + 1
Since we have at least one of the following inequalities z, <y a or
2, <p b, then NR(z,) +1 < NR(a) or NR(2,) + 1 < NR(b). In all
cases
NR(y) + 1 < NR(a) + NR(b) + 1
> Ify = > rw® 4 sign(r, ) exp(y’) with v/ < v and 3y < Inw®’

i<v’

(and y <Ilnw® if r,, = £1). Let z, be the series constituted of
the terms of a which absolute value is infinitely larger than w®.
We define the same way z,. Then y = z, + 2, + sign(r, )w™’.
Since there is term with order of magnitude w®’ with the same
sign as 7, in either a or b. Without loss of generality, assume it
is a. Then z, + sign(r,,) expy’ < a. We have

(NR(zq + sign(r,/) expy’), NR(2)) <iea (NR(a), NR(D))
otherwise y = a+0b what is not the case. Then, applying induction

hypothesis,
NR(y) < NR(z, + sign(r,) expy’) + NR(z) + 1

Since we have at least one of the following inequalities z, +
sign(r,)expy’ <a or z, <p b, then we have either

NR(z, + sign(r,/) expy’) + 1 < NR(a)
or NR(z) + 1 < NR(b)
In all cases

NR(y) + 1 < NR(a) + NR(b) + 1
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Then, for any y<a+ b, NR(y) + 1 < NR(a) + NR(b) + 1. This proves
that

NR(a + b) < NR(a) + NR(b) + 1

]
Corollary 6.24. For all a,b € No, NR(ab) < NR(a) + NR(b) + 1
Proof.
We have NR(ab) = NR(In (ab)) (Proposition |6.13)
= NR(Ina + Inb)
< NR(Ina) + NR(In b) (Lemma [6.23
< NR(a) + NR(b) + (Proposition 6.13
]
6.2.3 Paths

Surreal numbers can be seen as trees. More precisely, it is possible to as-
sociate to each surreal number a tree (with an ordinal numbers of node
at each layers) whose leaves are labeled by log-atomic numbers or 0. This
gives us some information about the structure of the surreal number. With
this notion of tree we can look at the paths from the root (labeled by the
surreal number itself) to the leaves that are not labeled by 0 (actually there
is at most one such a leaf). More precisely, the tree associated to a surreal

number z is built as follows:

e Base case: if v € L or x = 0 just create a node labeled by x and stop
the construction.

e Otherwise:

1. Put a node at the root and label is t . Write  under the form
r = Y riexp(z;) where r; € R*) v is an ordinal and z; € Noy,
1<V
form a decreasing sequence.
2. For all ¢ < v create built the tree for x; and link its root to x by

an edge labeled by r;.

With the a notion, it is possible to have a geometric interpretation of the
well partial order <.
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The dotted arrows from “sign” are to be understood by the fact that we can
apply the sign function or not to this arrow. The plain one means that we
must apply it. Thanks to this figure we can understand y < x by the fact
that the tree representation of y is a left-part of the tree representation of

Z.

Remark 6.25. The reason why we stop the construction on log-atomic
numbers is because if we proceed the construction, we would get an infinite
path where each node as exactly one child and where every edge is labeled
by 1.

This notion of tree comes with a notion of path inside the tree.

Definition 6.26. Let x be a surreal number. A path P of x is sequence
P : N — No such that

e P(0)is a term of x
e Forall i € N, P(i + 1) is an infinite term of In |P ()|

We denote P(z) the set of all paths of .
We also denote ¢(z) to be the purely infinite part of In|z|. Then P(i+1) is
an infinite term of ¢(P(7)).

Definition 6.27. The dominant path of x is the path such that
e P(0) is the leading term of x
e P(i+ 1) is the leading term of In | P(7)].

In a more graphical point of view, the dominant path of = is the left most
path in the tree of x that does not end on the lead 0. This reduce to the
left most path if x % 1.
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Proposition 6.28. Let x € No and P € P(x). Then for any n € N, the
length of the serie of ((P(n)), v(¢(P(n))) satisfies
V(U(P(n))) < NR(x) + 1

Proof. For any € No we write x = > 7;(2)w®® in Gonshor’s normal
i<v(x)
form. Now fix z € No. Let P € P(x). We set xy = z, and o < v(x) such

P(0) = g, (z)w0(@) and for any natural number n,

Tpi1 = Inwn (@) = ¢(P(n))
and Pn+1)= ranﬂw‘l“nﬂ(‘”"“)
Using Proposition we get

NR(zy41) = NR (wen (@)
By definition x,, is purely infinite. Then a,,,(2n41) > 0 for all natural
number n. Since P is path, P(0) ¢ R (otherwise P(1) is not defined) and
then aq, (o) # 0. We then can apply Proposition and get for all natural
number n
NR(z,+1) < NR (ran (xn)waa"(m”))
Now using Proposition [6.22NR(z,,+1) < NR(z,,)
Then for any natural number n we have NR(z,) < NR(zy) = NR(z).
Applying Lemma we get
Vn e N v(xz,) < NR(z,) +1 < NR(z)+1
O

Remark 6.29. Actually, we often have v(¢(P(n))) < NR(z). Indeed, using

the notations of the proof and assuming that v(x,.1) = NR(z)+1, we have
NR(z) + 1 = v(zp41) < NR(zp41) +1 <--- < NR(z) +1

Proposiﬁon 6.28]
Then, all the inequalities are equalities and from Proposition we get

that 2,4 is a finite sum of terms of the form £IL*!, in particular v(z,,,) <
w and NR(z) is finite.

6.3 Derivative of a surreal number

Definition 6.30 (Summable family). Let {z;}
numbers. For ¢ € I write
Ti= > Tiaw”

a€No

.er be a family of surreal

The family {z;},., is summable iff

(i) U suppu; is a reverse well ordered set.
i€l
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(ii) For all @ € |Jsuppz;, {i € [ | a € suppz;} is a finite set.
iel

In this case, its sum is defined as Y x; = > s,w* where for all a € No,
iel acNo

Sa = E Tia

i€l | a€suppz;

which is a finite sum.

Definition 6.31 ([BMI18b, Berarducci and Mantova, Definition 6.1]). A
derivation D over a totally ordered exponential (class)-field K O R is a
function D : K — K such that

D1. It satisfies Ve,y e K D(zy) = 2D(y) + D(x)y (Liebniz Rule)

D2. If {z;},., is summable, D (ZImZ> = Z:ID(QJZ) (Strong additivity)
S 1€

D3. Vx € K D(expx) = D(z)expzx

D4. kerD =R

D5. Vo > N D(z) >0

Remark 6.32. We can replace Axiom by

D2’. If {z;},., is summable and {r;},, is a family of real numbers,

D (Zr@) => riD(z;) (Strong lineraity)

iel iel
Indeed, we have

D2’] —[D2] and DILIND2IAND4] —[D2]

Berarducci and Mantova [BM18b| provided a general way to define deriva-
tion over the class-field No. We recall quickly some of their results.

Proposition 6.33 (|[BM18bl, Berarducci and Mantova, Proposition 6.4]).

We have the following properties for a derivation D:
e Vr,y e K 1% x>y= D(x) > D(y)
e Vr,yc K 1%z ~y= D(z)~ D(y)

o Vx,y € K l¥zxy= D(z) < D(y)
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If K C No is stable under exp and In, we can get a nice property satisfied
by a general derivation.

Proposition 6.34 (|[BM18bl, Berarducci and Mantova, Proposition 6.5]).
Let K C No be a field of surreal number stable by exp and In. Let D be a
derivation over K. For all z,y > N such that x —y > N,

InD(x) —InD(y) < z —y < max(z,y)

To define the derivation, Berarducci and Mantova started by defining it
on log-atomic numbers and then extending it on all surreal numbers. More

precisely, a derivation on log-atomic number must satisfy the following:

Definition 6.35 ([BM18bl, Berarducci and Mantova, Definition 9.1] Pred-
erivation). Let K be a field of surreal numbers stale under exp and In and
such that for all x € K, for all path P € P(x), for all k € N, if P(k) € L,
then P(k) € K. A prederivation over K is a function Dy, : LN K — K
such that

D3. VAeLnK Dy exp A = (DpA)exp A
PD1. For all A e LNK, DA is a positive term.
PD2. VA, peLNK In Dp A —In Dy In g < max(A, p)

They key notion to define the derivation from the the prederivation is the
notion of path derivative. This notion look at all the paths of the surreal
number to say how it contributes to the derivative of the surreal number.

Definition 6.36 (|[BM18b, Berarducci and Mantova, Definition 6.13] Path
derivative). Let P be a path. We define the path derivative 0P € Rw™°
by
op — P(0)---P(k—1)DLP(k) P(k)elL

0 VkeN P(k)¢L
We denote PL(x) = {P € P(x) | 0P # 0}, which is the set of paths that

indeed reach log-atomic numbers at some point.

One can notice that for any P € Pp(x), 0P = rw® for some r € R* and
a € No. Indeed, every P(k) is a term and Dy P(k), when P(k) € L is
an exponential of a purely infinite number, hence, it is a monomial. For
P € Pp(x) there is a minimum kp € N such that P(kp) € L. Then P is
entirely determined by P(0),..., P(kp). We then define ay(P),. .., ax,(P)
as follows :
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e Writing z = > 73(2)w®®@, then define ag(P) < v(wx) such that
i<v(zx)

P(O) = T'ag(P) (m)waao(P> }

e For 0 < i < k, write P(i) = rw® Then P(i + 1) is a term of Inw®.
Write Inw?® = > r;(a)w@(@), Then set a;,1(P) such that P(i+1) =

i<v(a)

Pauya () (@) (@)

Using Proposition we get that (o (P)),c[o . 4, 15 @ finite sequence over
ordinal less than NR(x)+ 1. In particular, we can give P () a lexicographic
order inherited from the one over finite sequences.

Definition 6.37. We define the order <;., on paths by
P <iee Q <= (0(P), ..., 1p(P)) <iew (0(Q), ..., ar,(Q))

This order will be useful later when we will try to understand better what
is going on to get some bounds about the derivatives. For now, the path-
derivative being defined, we can recall a theorem by Berarducci and Mantova
which explains how to build a general derivation from a prederivation.

Lemma 6.38 (|[BM18b, Berarducci and Mantova, Corollary 6.17]). Let
P,Q € P(z) such that OP,0Q # 0. If there is i € N such that

1.Vj<i  P(i)2Q(3)
2. P(i+1) is not a term of £(Q(1)),
then 0P < 0Q)

Lemma 6.39 ([BMI18b, Berarducci and Mantova, Lemma 6.18]). Given
P € P(z) a path of x we have for all i NR(P(i+1)) < NR(P(i)) with equal-
ity if and only if P(i) is the last term of L(P(7)). We also have NR(P(0) <
NR(z) with equality if and only if P(0) is the last term of x.)

Theorem 6.40 (|[BM18bl Berarducci and Mantova, Proposition 6.20, The-
orem 6.32]). Let Dy, be a prederivation over a surreal field K stable under
exp and In. Then Dy, extends to a derivation 0 : K — No such that

Vee K  Or = Z oP
)

PeP(x

In particular, {OP} pep(,) is summable (see Definition .
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The study would not be complete without an example. Berarducci and
Mantova provided such a derivation and even more: it is the simplest in

some sense.

Definition 6.41 (|[BM18b, Berarducci and Mantova, Definition 6.7]). We
define Jp, : L — No by

+00 +00
VAel A =exp|— Z ZlnnmﬁZlnnA
n=1

a€0rd|r_o =KX n=1

For example, we have:

Ow =1 OLexpw = expw
1 1
OLlnw = exp(—Inw) = — aJthnWZT
“ In; w
k=0
+00 +00
a]LHI = aﬂﬁo = €Xp (Z In,, Kl) a]Ll‘i_l = exXp (-Zh’ln w)
n=1 n=1

In fact, xy is intuitively exp,w. Therefore it is also quite intuitive that
OLk1 = K1 In(k1) Inln(ky) - - - . The same happens for k_; which is intuitively

In, w. We indeed have O k1 =

win(w)Inln(w) - -+

Proposition 6.42 ([BM18b| Berarducci and Mantova, Propositions 6.9 and
6.10]). O is a prederivation.

The previous proposition ensures that the associated function 0 defined by
Theorem [6.40]is indeed a derivation over surreal numbers. It turns out that
it the simplest for the order C.

We now explain what is meant when saying that 0 is the simplest derivation.
In fact, we mean that oy is the simplest prederivation with respect to the
order C.

Theorem 6.43 (Berarducci and Mantova|BM18bl Theorem 9.6]). Let D,
be a prederivation. Let A € L, minimal (in L) for C such that Di\ # OL\.
Then O\ T Dy .

6.4 A first bound about the derivative

We give here some bound on the length of the series of a derivative.
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Proposition 6.44. For any x € No, the set Pp(x) is well-ordered with

w(NR(z)4+1) .
w . In particular,

W (NR(@)+1)

order type [ < w
v(0r) <w

Proof. We know that {OP} pcp, is summable (see Definition . In par-
ticular {OP} pp, () is summable. By definition of summability (in this con-
text) for any P € Pp(x), there are finitely many @ € Pp(x) such that
0P = 0Q).

By definition of summability, <p is a well total order over Pp(x) and if g
is its order type, then w ® v(dz) < [ (usual ordinal product). Then, to

ww(NR(zH—l)

complete the proof, we just need to show that § < w . We proceed

by induction on NR(z).
e NR(z)=0: then z = 0 or z = +y*! for some y € L and v (dz) <1 <

w*” and we conclude the proof.

e Assume that for any y such that NR(y) < NR(z), PL(y) has order type

w(NR(y)+1 . w(NR(z)+1)
less than w® V*Y - Assume for contradiction that 8> w” e,

ww(NR(zH—l)

Then for any multiplicative ordinal g < w , there is some

P, € Pr(z), minimum with respect to <, such that the set

Eulz) ={Q e Pr(z) | @ <p P}
has order type 8, > p. Let us select any p such that p > w®
Now define

() ={QePulx) | Q <p P Q <iew P}
&Y ={Q e P(2) | Q >1x P}

Theses sets are disjoints andl, = S,(Ll) U 5,52)
Let 5,9) be the order type of S,Si). We then have

p< B, <Y+ Y

where the addition is the surreal addition of ordinal numbers. Since

w NR(z)+1

4 is multiplicative ordinal, hence, an additive one, at least one of the
5;(}) > [
> First case : ﬁ,(f) > . Since p is additive, there isani € [0 ; kp]
such that the well ordered set
et ={Qee? | vi<iQu)=Rl) Q) <P}
has order type at least . We take such an i. For Q) € E,SQ’i), we
consider the path Q'(n) = Q(n+i+1). Since 0Q = 0P,, Lemma
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gives us that Q(i + 1) is a term of ¢(P,(z)). We then have
Q' € P (((P,(i))) and
Q 0Q
Q" =
Y3

0 Q@) — B0) -+ Fui—DQ()
In particular Q" € Py ((P,(7))). Since Q(i) < P,(7), P,(i) is not
the last term of (P, (i — 1

ensures that
NR(£(P,(7))) < NR(P,(i)) < NR(z)

Applying the induction hypothesis on ¢(P,()), the order type of
PL((€(P,(7)))) has order type 7 such that

) (or x if i = 0). Then Proposition

W@ (NR(£(P(4)))+1) ww NR(z) ww NR(z)+1

¥ <w <w
For Q,R € &>, Q <p R iff
(Q(1)0Q" = R(1)OR') V (Q(i)0Q" < R(i)OR' N Q(i)0Q" > R(i)OR')
V(Q()IQ = RIR A Q <o R)
what we can also write
Q<pR< (K(Q(z)) +0(0Q") > U(R(3)) + €(8R’))
\/(E(Q(i)) +0(0Q") = U(R(i)) + L(OR") N Q(i)0Q" > R(i)@R’)
V(Q(i)0Q' = R(1)OR N Q <iex R)

where the two later cases occur finitely may times for @) or R

<w <u

fixed. Let 0 denote the order type of the possible values for
Q(i) and B3 the order type of £”. Since ¢ is non-decreasing,
the set {6(8@’) ‘ Qe ELQ”)} has order type at most v and the

set {f(@(z))“@ € Eﬁz’i)} has order type at most NR(x). Using

Proposition [2.3]

B2 < (VNR(@)) @ w < p
Finally p< B <
and we reach the contradiction.
> Second case : B,(LQ) < p. Then 5&1) > p. Let us define for ¢ €
[0 kp]
&0 ={Qeel | vi<iB()=QU) P)<QM)}

Since there are finitely many of them, that they form a partition

of 5,81) and p is multiplicative, hence additive, there is at least
one of them which has order type at least u. We consider such
an i € [0 ; kp]. Now define

m:{ T oi=j
TP ——1) j<i
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ertlng Ty = Z 'f’n(l'o)a}a"(xo) and PM(Z) = Tay (xo)waao(xo) we
TL<V(Q?())
set

o= 3 rueo)w =

n<ag

Now for 0 < j < i, we define y;,; has follows. P,(i —j — 1) is
a term of x; ;. Write P,(i —j — 1) = raj+1(a:j+1)w“”j+1(ff+l) for
some ;i1 < v(2;4+1). Then set
Y = > Talri)w @) 4sign(ra,, (2541)) exp(y;)
n<ag41

Denote y = y;. For QQ € Eﬁl’i). For any @ € Eﬁl’i) we will build
Q' € PL(y). We expect to use the induction hypothesis on y.
First we prove that NR(y) < NR(z). In fact, by trivial induction,
we have y; <; x;. So y <;  and by definition of NR we have
NR(y) < NR(z). Now consider the path Q" defined as follows :

Vi <i o Q) = sign(ra, (#i-;)) exp(yi—j-1)

SV Zi Q) =Q3)
We then have Q' € P(y). We can even say @)’ € PL(y). Moreover,
since we change only the common terms of the path, and the
changes do not depend on (), we have

VQ,Re&M  Q<pReQ <p R

We then have an increasing function

P - & = Puly)
Q =
The induction hypothesis give that the order type of P'(y) is less
W (NR()+1)
than w . Then

ww NR(z) w@(NR(y)+1) ww NR(z)

<pu<w Sw

and we get the contradiction.

This completes the proof.

Corollary 6.45. If NR(z) < A then v(0z) < A

Proposition 6.46. For all v € No, let o the minimum ordinal such that
k_o <Kt for all log-atomic t such that there is some path P € Pp(x) and
some index k € N such that P(k) =t. Then, for all path P,

and

NR(OP) < k(NR(z) + 1) + w(or + 1)
NR(0z) < w(NR(z) + o + 2) @ v(dz) < w0 +a
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Proof. Let P be a path of such that 9P # 0. Then there is some k € N such
that OP = P(O) P(k — 1)0,P(k). With Corollary [6.24] we get

NR(9P) < Z NR(P(i)) + NR(OLP(k)) +

< kNR )+ NR(OLP(k)) + k (Lemma [6.39)
< kENR(x) + k+ NR exp< Y In,k_pg+ > In, P ()))
P(kyn>1 n>1

<kNR()+k+NR< > rog+ 3 In, ())

k=K P(k)n>1 n>1
(Proposition |6.13
<ENR(@Z)+k+ (w® (ad1)) (Lemma [6.18
< w(NR(z) + 1) +w(a+1)
This bound does not depend on P. Then applying Proposition and

Lemma [6.17] we get
NR(0z)

< (w(NR(z) + a+2)) @ v(dx)
< (W(NR(z) + o + 2)) @ w0
< w¥

w(NR(z)+1)+a

6.5 Anti-derivative of a surreal number

Berarducci and Mantova provided a derivation, . An other strong property
of this derivation is that is as a compositional inverse, an anti-derivation.
The first thing to prove it is to prove that there is an asymptotic anti

derivation.

Proposition 6.47 ([BM18bl, Berarducci and Mantova, Proposition 7.4]).
There is a class function A : No* — Rw™N°" such that
Vx € No* x ~ 0A(x)
zu/ou
O(zu/0u)

ciently large ordinal. Actually we can be even more precise and give a more

Basically, A(z) is the leading term of where u = K, for a a suffi-

explicit formula for Berarducci and Mantova’s asymptotic anti-derivation
IBM18h].

Lemma 6.48. Let u = In, k_, for some n € N and some ordinal o. Let

x
2(5:) ~
Oe v
x ou . o
Proof. Let y = — = — exp(e). Since £ > Inwu, Proposition |6.33| ensures

Oe Oe

that de > @ Then, < #* 1
u Oe

x=0uexpe. If ¢ = Inu, then
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ou Ju
Oy = gﬁe exp(e) + 0 (%) exp(e)

~rvo(2) owte

)
Proposition 6.33) gives that 0 (8—“) < Ou. Then
9

Oy ~x
O]

Lemma 6.49. Let u = In, k_, for some n € N and some ordinal o. Let
x = Ouexp(e). If e ~rlnu for some r € R\ {0,—1}, then

1wz
B 2~
(7’ +1 8u) ’
Proof. Let us compute the above derivative.
5 AN 9 uexp(e) __F ude exp(e)
r+10u r+1 r+1 r+1

Using Proposition [6.33) we get that 0z ~ O(rlnu) = r Then, since
u
r # —1, we get that
1 wux
o 2 o
(r +1 8u) v

Lemma 6.50. Let u = In, k_, for some n € N and some ordinal o. Let
x = duexp(e). If e < Inu, then

uzx
0 (—) ~ T
ou
Proof. Let us compute the above derivative.

0 <g_x> =0 (uexp(e)) = x + ude exp(e)

0
Using Proposition |6.33] we get that de < dlnu = 7 Then, uds exp(e) < x
u

and we get that
ux
0 ()~

Theorem 6.51. Let x be a term. Write || = Quexp(e) with u = In, k_o =

]

]

A wa—n With wa +n such minimal that € # —Inu. Then,

T
— e>=Inu

Oe
uxr
A(I‘)N m ENTII’IU 7”750,—1
ur <Inu
ou c

In this theorem, the quantities x, and A, are defined in Definitions and
6.5]
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Proof. Since A(z) = —A(—z), we may assume that = > 0. Then, we just
need to apply Lemmas [6.48] [6.49 and [6.50] [

Corollary 6.52. Let x be a non-zero surreal number. Write |x| = Ouexp(e)

withu = 1n, k_o = A_ya_n with wa+n such minimal that € o4 —Inu. Then,

t
- e>Inu
s
Alz) = ut
—(r+1)8u e=rlnu+n r#-1,n<lu

where t is the leading term of x and s the leading term of Oe.
Proof. Just use Theorem and the definition of A. ]

We are now ready to build the anti-derivation for surreal numbers. We start
with a useful lemma due to Aschenbrenner, van den Dries and van der
Hoeven. We give it in a form that matches our notations.

Definition 6.53. A function & is strongly linear is for all summable family

{Ii}z‘eb

o (Z}) = ()
iel i€l

Lemma 6.54 ([AvdDvdHO05, Aschenbrenner, van den Dries, van der Ho-
even, Corollary 1.4|). Let ® a strongly linear map defined over a field K of
surreal numbers. Assume that for any monomial w* € K, we have ®(w*) <

w®. Then Y ®"(x) makes sense as a surreal number (i.e {®™(x)}, oy is
neN
summable) and if it belongs to K for all x, we have

(id=®)~t = > on
neN
Definition 6.55. We define an extension of A, denoted A, to all surreal
numbers by
A (me‘“) = > r;A(w)
i<v 1<v
We also introduce the function ® = id —0 o A.
Proposition [6.33] ensures that the function A is well defined. Moreover,
this function is obviously strongly linear. We now consider, given a surreal
number x, the sequence
Top =X
Tpe1 = X, — 0A(xy,) = O(,)
Note that if w* = Quexpe with u = A_yga—n =In, k_q and ¢ < InA_,gp-m
forw®pf+m<w®a+n, and w® o+ n maximum for that property, we
have
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d(w) =
(1 — %) w® —0 (@> expe ¢ > Inu s dominant term of de

a U

T+ 1877%

e=rlnu+n r#-1

Corollary 6.56. The operator id —® is invertible with inverse > ®'. More-
ieN
over Ao > @' is an operator thal sends every x to some anti-derivative of
ieN
x.

Proof. Lemma [6.54| ensure that id —® has a inverse expressed by > ®’. We

iEeN
also have that 1d —® = 9 o A. Then,
do (Ao zqﬂ) — (Do A)o(doAd) ' =id
ieN
In particular, for all z, (A o Z@’) (x) is a anti-derivative of x. O
ieN

7 Field stable under exponential, logarithm,
derivation and anti-derivation

7.1 Length of the series of a derivative of a monomial
7.1.1 Case c<Inu

Lemma 7.1. Assume x = w® = Quexpe withe = rInu+n andu = In, k_.
Let b € supp ®(w®). Then, there is a path P € Pp(n) such that

+00 +00o
W< Quexp [ rlnu+n— > Inpr o— >, I,k g+ > In|P>i)
m=n+2 B> a,meN* =0

B | kg =" P(kp)

a

u
— 1S a term as a
r+10u

product of terms. Then, let b € supp ®(w?). There is path P of 1 such that

Proof. 1t is just a calculation. First notice that

Wb = waaﬂap = udPexp(rinu+n)
Uu

write OP = P(0)---P(kp — 1)OLP(kp)

Since P(0) is a term of n < Inu, we also have P(0) < Inu. Moreover since 7
consists in purely infinite term, so is P(0) and then In|P(0)| < P(0). Since
P(1) is a purely infinite term of In|P(0)|, we get that P(1) < P(0). By
induction, for all i, P(i+1) < P(i) < P(0). In particular, P(kp) < P(0) <*
K_q. Then, k_o =% P(kp). That leads to
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+00
OL(P(kp))=exp | — > Inpkpg— > Inpk_sg+ > In, Pkp)
B<ca, meN* B> a,m e N* m=1
Bl r_p =" P(kp)

+00 oo
OL(P(kp)) =0uexp | — > Inpko— >, Inpk_pg+ > In, P(kp)
m=nt1 B> a,meN m=1
B | kg = Plkp)

Since P(kp) € L,

+00 +00
OL(P(kp)) = Ouexp | — > Inpko— D, lnpk_g+ >, In|P(i)
m=n+1 B> a,meN* i=kp
B kg =" P(kp)

+00 oo
Then OP =0uexp | — >, Inpko— >, Inyr_pg+ > In|P(>)
m=nt1 B> a,meN i=0
B | kg =" P(kp)

Finally,

W’ < Quexp(rinu + n)u

+o0 +00
xexp | — >, Inpka— >, Inyr_pg+ > In|P(>3)]
m=nt1 B> a,meN i=0
B | kg =" P(kp)

+00 oo
W= Ouexp | rlnu+n— >, Inpk o— >, Inpk g+ > In|P>)
m=n+2 B> «a,m e N* 1=0
B | kg =" P(kp)

Proposition 7.2. Assume x = w® = OQuexpe with ¢ = rlnu + n and
u=1n, k_. We denote for Py, ..., P, € PL(n) and i, ..., i € N¥,

+00
e( PO"”’].Dk ) =—(k+1) > Inpk_qo

il,...,Zk

m=n+2
k " k +oo )
-, > kg4 3 > In|Pi(i)]
7=0 8> a,m e N* J=0i=t;

ﬂ ‘ K—p >—_K Pj(kpj)
with ig = 0. For k € N define Ey, by:
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6(?07”'7?)16)EEL]C@PO,...,P]CE,P]L(H) VAN il,...,ikEN*

11y,
AN Viell; k] 3 ef0;j—1]
Vie[0; i —1]  Py(i) = P;(i)
A Vie[l; k]

supp P;(i;) C suppe ( ];O’ o ke )

Tyovey tk—1
Ey = UEwx
keN
+00
- Z 1nm KR_q ﬁ >«
Ey, = m=n+2 p P € PL(U) K-8 EK P(k‘p)
- > Inpky— > In, kg pEeN
y<B, meN* m=1
p
Es = {— > Ing ko p2n+2}
m=n-+2

E=FEUFE,ULs

+00

and (E) be the monoid it generates. Let b € |J supp ®*(w?). Then, there is
=0

y € (E) such that

Wb < Quexp(rinu +n+y)
Proof. We prove it by induction on /.
o If b € suppw?, then y = 0 works.

e Assume the property for £ € N and let b € sup ®“*1(w?®). Then there
is ¢ € supp ®‘(w?) such that b € supp ®(w®). Apply the induction
hypothesis on ¢ and on y associated to c. Since any element e € E is
such that e < Inu, we have y < Inu then Apply Lemma to get
that there is P € Pr(n + y) such that

+00
W< Quexp | rlnu+n+y— > Ingpk_q
m=n-+2

+00
— Y kg4 W|PG)
B >a,meN* =0
B kg =" P(kp)
If P(0) a term of n, up to some real factor, then there is a real number

s and some e € E; o such that
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+00 +00
exp| — > Inpko— > Inpkpg+ D In|P@E)| | =sexpe
m=n+2 B> a,meN* =0
B | kg = Plkp)
Then y + e € (E) and w® < Juexp(rlnu + n + y + e). If not, then
P(0) is a term of y (not up to a real factor, an actual term). Hence,
we have the following cases :

> P(0) = sln, k_, for some s € R* and p > n + 2. Then,

+00 +00 p
— > Inpka— D>, Inpk g+ > In|P@)=Inls|— > In,k_o
m=n+2 8> a,mc N* 1=0 m=n+2
Bl k= P(kp)
€ lnls| + E;5
Then,

+00 oo
y— > Inpra— > Inpkpg+ > In|P@lE)| eR+ (E)
m=n+2 B>a,meN i=0
B | kg = Plkp)
> P(0) = sln, k_g with § > o and p € N* such that there is some
path @ € PL(n) such that k_5 =% Q(kg). Then

+00 oo
— > Inpka— Y, Inpkg+ > In|P(i)] €lnls| + Ey
m=n-+2 B> a,meN* i=0
B | kg = P(kp)

Then,
+00 +00
y— > Inpko— > Inpk g+ > In|P>i)| € R+ (E)
m=n+2 B> a,m e N* i=0
B | kg =" P(kp)
> There are some paths Py, ..., P, € PL(n) and some non-zero
integers 11, ..., %, such that
Vie[l; k] 3 e€0; j—-1]Vie[0;dq;—1] Py(i)=
410
and
+00
Jy' € (E) =y —(k+1) Y Inpk_q
k mente k +oo )
-> > Inprog+ 3 >0 In[P(d)|
=0 B> a,meN* J=0i=i;

B 1 kg =" Pi(kp,)
and such that P(0) € Rz for some z a term of some In | P; (i)
with j € [0; k] and ix4y > i;. Let Pyiq be the following path
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Py(i) i <iigy
Pk+1<’i) = z 1= ik+1/ + 1
Pli—ipd —1) i >ip +1
Then, P,y € P(n). Moreover, 0P,1 = P;(0) - Pj(ix+1') OP,

A
40 #0
Then P41 € PL(n). Note also that for all 3,
K_g EK Pk+1<kPk+1) <~ K_g3 EK P(k?P)
Finally,
+0o0 +o0
— > Inpko— D Inpk_pg+ > In|P(i)
m=n+2 B> a,meN* i=0
B | kg =" P(kp)
+00 +00 ) P(O)
=— > In,k_ o— > I, k_g+ Y, In|Pei(d)]+In .
m:n+2 B >a,.mE N* i:ik+1/+1
b N,
ﬁ | Kk—p EK Pk+l(kPk+1) €RY
From that we derive that
+00 oo
y— >, Inpro— > Inpk_pg+ > In|P(i)
m=n+2 B> a,meN =0
B | kg =" P(kp)
+0oo
=y —(k+2) > Inpkr_qo
m=n+2
k+1 k41 +00 ‘ P(0)
-3 > lnmﬁg—l—ZZanDj(z)\—i-ln’—‘
=0 B>a meN* J=0i=i;
B | kg =" Pi(kp,)
€ R+ (E)
where i;11 = i1’ + 1 and Pyyq(ix) = 2 has indeed its sup-

port (which is reduced to a singleton) included in the one of
( Py, ..., Py )
el . ).
T1,...,%
Then there is a real number s, and e € (E) such that

W’ < Quexp(rlnu+n+e+s) < duexp(rlnu+n+e)

Then we get the property at rank ¢ + 1.

By the induction principle, we conclude that the proposition is true for any
¢ e N. ]

Corollary 7.3. Let x = > ryw® such that
1<v
Ju=1In,k_o Ir € RVa €suppzr In <Inu w* = 9d(u)exp(rlnu+n)
We denote for Py, ..., P, € PL(x) and iy,...,ix € N\ {0,1},
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+00
e(P0,7Pk):_(k_|_1) Z lnm/'ifa

il,...,ik m:n+2
k k +oo )
-> > kg4 > In|Pi(i)
=0 B>a,meN* J=0i=i;

B | kg = Pi(kp)
with ig = 0. For k € N define Eyj, by:

6(50’.”72.Pk)GELk{:}PO,...,PkE’P[L(U) A il,...,ikEN\{O,l}
Ly-os 2k
AN Vie]0; k] P(1) <Inu
AN Yje[l; k] 3Fi€]0; 5—1]
Vie[0; i, —1]  Pp(i) = P;(i)
AN Vjiell; k]

supp Pj(i;) C suppe ( o i )

21,00y lk—1
Let also
E1 = U El,k
keN
+00
— Z In,, K_o — Z lnm/i,y B> a
B, = m=n+2 ) v<pB, meN* AP € Pr(x) k_g =% P(kp)
—> In, K_g peN
m=1
P
Ey = {— > Ing ko p2n+2}
m=n+2

E=FEUFE,UL;s
and (E) be the monoid it generates. Let b € Dosupp ®Y(x). Then, there is
y € (E) such that -
w’ < exp(y)
Proof. Since ® is strongly linear, we just need to apply Proposition to

each term of z. For each term, Juexp(rlnu + n) is term we add at the
beginning Fy. Each path involved is shifted one rank. O

Proposition 7.4. Let x = ) r;w® such that
i<v
Ju=1In,k_o Ir€RVa€suppxr In <Ilnu w® = 9J(u)exp(rlnu+n)
Consider Ey, Ey and E3 as defined Corollary [T.3. Let v be the smallest
ordinal such that k_, <¥ P(kp) for all path P € Pyr(n). Let X the least
e-number greater than NR(z) and 7. Then E = FE; U Ey U E3 is reverse

well-ordered with order type at most 2\ + w(y + 1).

Proof. First notice that Ej3 is reverse well-ordered with order type w. Fs is
also reverse well-ordered with order at most w +w®v+n <w® (y+ 1).
We then focus on E;. We denote again
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+00
P(]?’Pk):—(k""l) Z lnmﬁia
i1yl m=r+2
N k +oo
-3 > I kg + 30 22 In | P5(3)]
=0 B>a,meN* o

Bl kg =X Pi(kp,)

We first claim that for all ¢ > 3 and all path P € P(z) such that
P(1) < Inu, P(i) < P(2) =< Ingu. Let P € P(x) such that P(1) <
Inwu. Assume P(2) > Iny u. Then, since P(2) is a term of In |P(1)], we
also have In|P(1)| > Iny(u). Then, either In|P(1)| < —mInyu for all
m € N, or In|P(1)| > mlny(u) for all m € N. By definition, P(1) is
purely infinite. In particular, In |P(1)| cannot be negative. Then,

Vm e N In|P(1)| > mInau
and Vm e N |P(1)] > (Inu)™ (exp is increasing)
which is a contradiction with P(1) < Inu, since In u is infinitely large.
Since, for ¢ > 2, P(7) is infinitely large, In|P(i)| < P(i), and since
P(i +1) < In|P(i)|, we have for all i > 1, P(i + 1) < P(i). By
induction, we get

Vi>3 P(i) < P(2) < Inyu

We claim that for all path P € P(x) such that P(1) < Inu, if P(2) <
Ins u, then, denoting r the real number such that P(2) ~ rlngu, we
have 0 < r < 1. Let P € P(x) such that P(1) < Inu and assume
P(2) < Ingu. Since P(2) is a term there is a non-zero real number r
such that P(1) = rlng u. From (i), we know that P(2) is the dominant
term of In|P(1)| so that

In|P(1)| ~rlnyu

If » < 0, Proposition [5.5] ensures that |P(1)| < 1 what is impossible
since P(1) is infinite. Then r > 0. If now r > 1 then again with
Proposition [5.5] |P(1)| > Inu what is not true. Then, 0 < r < 1.

For all j and ¢ > 2, In|P;(7)] < Ingu < Inyu. Indeed, using (i), we
know that P;(i) < Inyu. Then, there is a natural number m > 1 such
that |P;(i)| < mlnyu. Using the fact that In is increasing,

In|P;(i)] <Ilngu+Inm < Ingu < Inyu

We now claim that Eyj > Fj 0. Indeed, using (ii) and (iii) if e; €
E, i, then thereis s € [—(k + 1) ; —k|] such that e; ~ s1ny u. Similarly,
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for e; € Ejjgio, there is ' € [—(k+3);—(k+2)] such that e; ~

s"1ny u.

We define the following sequence :

W@ (NR(z)+1)
® (g — W

ww(w(NR(z)+’y+4)ak+1)
® dpi1 =W

We show that E) j is reverse well-ordered with order type less than
ai. We also claim that the equivalence classes of E) /< are finite and
that

NR ( > exp t> <w(NR(z) +v+4)ax

tEElyk

We show it by induction on k € N.

e For k =0, let t € Eyo. Take P € Pr(z), minimal for <., such
that P(1) < Inu and t = e(P; ). Then

O(lnu)expt = |P(0)--- P(kp — 1)]exp | — > In, k_g

B | k_p=" P(kp)
m € N*

+00
+ 2 In[P()]
i=kp
= [0P]
Since there are finitely many paths @ € Pp(x) such that OP =<
0Q), there are finitely many ¢’ € E; o such that

O(lnu)expt < I(Inu)expt

Since exp is an increasing function and d(Inwu) > 0, we get , using
Proposition that E o is reverse well-ordered with order type

ww(NR(z)+1) _ www(NR(ac)-!—l)

less than w ® w = ap. Finally, it remains

to compute the nested rank of > expt. Write

teEl,O
+00 oo
t=— > In,k q— > In, k_pg+ > In|Py(7)|
m=n+2 B8 >a,meN* =0

Bl k_p =" Py(kp,)
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+00 oo
NR({#) =NR|—= > Inpkoa— > Inprpg+ > In|P(i)
m=n+2 B> a,meN i=0
B | kg =" Py(kp,)
+00 +00
<NR |- > Inpkoa— >, Inprpg+ > In|F(i)]
m=n+2 B> a,meN* i=kp,
ﬂ ‘ K-p EK Po(kpo)
kpy—1
+ > NR(In|Py(i)]) + kn, (Lemma [6.23)
i=0

kpy—1

Swewevdw)+ > NR(In|Fy(i)]) +kp,  (Lemmal6.18)

=0
<(WOw®vyBw)+ kp,(NR(z)+1) (using Proposition [6.22)
< w(NR(z) + v + 4)

Then, since the equivalence classes of Ej o/< are finite,

NR( > expt) < w(NR(z) +~v+4)ag

tEELo

e Assume the property for some k € N. Let t € Ej 4. Let

(Py,0), ..., (Pxs1,igr1) minimal for the order (<jez, <) such
Py, ...
that t = e ( 05 P ) Then,
(RN N |
+00
t:e( PO"”’Pk ) — > Ingpk_q
11,...,0% m=n-+2
+00
— > Ing, kog+ >, In|Pey(d)]
B> a,meN* i=ikt1
ﬂ | K_p EK Pk+1(kpk+1)
Write s = e ( F.)O’ o "‘.Pk ) We then have,
T1,...,%%
O(Inu)expt = exp(s)exp | — > In, k_g
/8 | Kk-p EK Pk+1(kpk+1)
m € N*

+00
+ 2 [P

1=k 41

Consider the following path:

R(0) =exps
R() = Por(i — 1 +igs1) i>0
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It is indeed a path since, by definition of E} 11, supp Pii1(ik+1)
must be contained in supp s. Then,

J(nu)expt = 0R

Moreover, R € P, | > exps |. By induction hypothesis and
SGELk

Proposition E) 41 has order type less than

W (W(NR(2)+y+4)ay+1)
w = Qg41

Since the equivalences classes of P, ( > exps | /< are finite,

SEEl’k
the ones of Ej ;41/= are also finite. Finally, using Lemmas [6.23]
and [6.18]
k1kp; =1 k41
NR(t) < (wbw@ydw)+ > > NR(In|F;(i)]) + > max(0, kp, — i )
J=0 i=i 7=0

< w(NR(z) +v+4)

Then, NR ( > exp t’) < w(NR(x) + v+ 4)ag

e ki1

We conclude thanks to the induction principle.

(vi) By easy induction, for all k € N, a < \.

N
(vii) Using (iv), we get that for all N € N, [JFEo is an initial seg-
k=0
N
ment of (J E o, We also have that |J Ej o41 is an initial segment of
kEN k=0

U F1k+1. Using (v), we get that (J E} o has order type at most
keN keN

NEN}:sup{a2N| NeN} < A

N
sup ¢ D agg
k=0 by (vi)

keEN
we conclude that E; has order type at most 2.

Similarly, |J E12k+1 has order type at most . Using Proposition ,
Using again proposition , point (vii) above and the properties of Ey and
E3 mentioned in the beginning of this proof, we get that E is reverse well-
ordered with order type at most 2\ + w(vy + 1). O

Corollary 7.1. Let x = > rw* such that
1<v

Ju=In,k_, IreR Vaecsuppxr In<Ilnu w® = Juexp(rlnu+n)
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Let ~ be the smallest ordinal such that _, <* P(kp) for all path P € Py(n).

+00
Let \ the least e-number greater than NR(z) and . Then |J supp ®(z) is
=0

reverse well-ordered with order type less at most w?GATw0+1)+1)
Proof. Just use Propositions and [2.4] O

7.1.2 Case > Inu

Lemma 7.2. Let x be a surreal number. Let P be the dominant path of x
and Q € Pr(z). Then, P(kp) =% Q(kg). In particular, for all ordinal 3, if
k_pg =% P(kp), then k_g =% Q(kg).

Proof. (i) We first claim that for all ¢ € N, P(:) > Q(i). We prove it by

induction.
e For i = 0, P(0) is the leading term of z and Q(0) is some term
of . Therefore, P(0) > Q(0).

e Assume P(i) = Q(i). P(i+1) is the leading term of In | P(7)|. P(4)
and (i) are both infinitely large. Then In|P(i)| and In|Q(7)]
are both positive infinitely large. If Q(i + 1) > P(i + 1) then, in
particular, In|Q(7)| > In|P(i)| what is impossible since P(i) >
Q(t). Then P(i+1) = Q(i +1).

We conclude thanks to induction principle.
(ii) Take k = max(kp, kg). Using (i), we have :

P(kp) <" P(k) = Q(k) <" Q(kq)
Hence, P(kp) =% Q(kg).
0

Lemma 7.3. Assume x = w® = Quexpe with € > Inu and u = In, Kk_,.

Let b € supp ®(w®). Then, we have one of theses cases :

e there is a path P € P(n) and i € N such that

+0o0o
w’ =< duexp | € — > lnmﬁ_ﬁ—l—Zln‘
B> a,meN* j=0
B | Pokp,) =" rp =" P(kp)

and Vie[0;i—1] P(j) = Py(j)

P(i+7) ‘
Py(4)
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o There is some (5, m) <ier (v, 1) such that there is some n < In,, k_g
such that
w? =< (I, k_g) expn

where n = ¢ +n' and ' only depends on «, B,n,m and Py, the domi-
nant path of € :

+00
= > kg~ > Inga— > In[Ry0)
(C?p) >l€$ (/Bam) (B’m)<lez(c’p)<lez(a»n) i=0
¢l hg =X Po(kpy)

+00o
or n = > In,k_¢ — | In | Py(i)]
(Cap) Zlez (a,n) =0
¢ | kg =" Pokp,)

0 0

Proof. We have O(w?) = (1 — —6) w*—0 (_u) expe
s s

Let b € supp ®(w®). Then either

b € supp ((1 — %) w“)
s
or b € supp <8 (@> exp &?)
s

0
e First case : besupp| (1 — —€> wa>. Then there is a path P, which
s
is not the dominant path, such that

+00
ep|= Y Inass+ Y|P
B> a,meN* i=0
, _oP . Bk g =K Plkp) )
= — = w
S
+00
ew|- % I, ks + 3 In[Py(0)
=0

B> a,meN*
B | kg =" Po(kp,)

where Py is the dominant path of . Using Lemma [7.2] we get

P(i)
Po(i)

+00o
whexp | — 3 In, k_pg + ;}ln
8> a,meN* =
B | Po(kp,) =" kg =" P(kp)
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e Second case : b € supp (8 (@> exp 5). First notice that d0u =
s

S, 0u where
n—1 m—1
Yoexp|l— >, Inpykpg— > Inyk_,
m=1 1

00
Hence, if b € supp <_u exp 5), there is some (3, m) <jex (a,n) such
s
that

m—1
exp (— > Inyk_¢— 21 In, /i_g)
p:

Wb = (<p peN*
+00
exp | — > In, k¢ + > In|Py()]
p e N* i=0
¢l hg = Pokp,)
+00
Therefol, =< w® exp > In, k¢ — > In|Py(7)]
(Cap) Zlem (Bam) =0
Clhc= Po(kp,)
Notice that > In, k_¢ ~ In, kg > Fy(0)

(C?p) Zle;ﬂ (va)
(| hee =5 Pokp,)

and then
w* < J(In,, k_g)exp | € + > In, k_¢
(Cap) Zlex (/Bam)
| he¢c =" Pokr,)
+0o )
- 2 Iy k¢ = > In | By(d))]
(ﬁvm)<le:c(<7p)<lem(a7n) 1=0
+00
Since e—> In|P(i)| ~e<1In, k_p
i=0
and > In, k_¢ — > In, k¢ < Iny, kg
(C,p) Slex (5,77’},) (va)<lez(<7p)<lez(avn)

¢l ke =" Py(kp,)
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Moreover,

NR <ln O(Iny, k_p) + € — > In, K,g) < NR(x)
(a;n)

(/va) <lex (C:p)<lez

and using Proposition [6.46]

+00
NR > Inproc— > In|Ry(i)| | < NR(OR)

(C7p) >lex (6772’1) =0
C ‘ K—¢ EK PO(kPO)

< kp,(NR(z) + 1) + w(y+1)

We then conclude that there is some 7 < In,, k_g such that
w® = 9(In,, k_g) expn
and by Corollary [6.24]
NR(w?) < (kp, + 1)(NR(z) + 1) + w(y + 1)

0s
Now assume b € supp (—2w“>. Notice that
s

+00
Os=s|— > Olny, kg + > 0In|FPy(7)|
m € N* =0

Bl k_p =K Py(kp,)

m—1
=s |- > exp (— > Inyk_¢— > In, /i_g>
p=1

m € N* (<B peN*
Bl k_p =" Py(kp,)

+00
+ 2.0 |Ry(1)]

i=0
We then have the following sub-cases :

> There is some m € N* and some ordinal 3 such that x_g —K
Py(kp,) such that
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m—1
exp (— > Ik — Zl In, /i_lg>
p:

b (<p peN* a

wh =< w
+00

exp | — > In, k¢ + > In|Fy(7)|
p € N* =0
¢l = Po(kp,)
+00
=< J(In,, k_pg)exp | e+ > In, k¢ — > In|By(7)|
i=0

(Cap) Zlem (aan)
¢l r¢ =" Py(kp,)

with
+00
£ — > In, ke — > In|Po(i)] ~ e < Iny, kg
i=0

(>apeN*
¢l ko¢c=" Po(kp,)

We then conclude that there is some 7 < In,, k_s such that

w’ = 0(In,, k_g) expn

and by Corollary [6.24]
NR(«?) < (kp, + D(NR(z) + 1) + w(y + 1)

> There is some path P € Pp(¢) and some ¢ > 1 such that for all
Jj <1, P(j) = Py(j) and

+o00
exp | — > In, k¢ + > In|[P(j)|
p e N* J=t
. C| hoe = Plkp) )
w’ < w
+o0
exp | — > In, k¢ + > In| By (j)|
p € N* J=0

¢l hc =" Po(kp,)
As in the first case, we get

voo | P(i 4 i
W = wrexp | — > lnm/fg—kZln’(Z—,j)’
B> a,meN* J=0 Fo(7)
B | Polkp,) =" kg =" P(kp)
O
Proposition 7.4. Assume © = w® = Ouexpe with € > Inu and u =

In, k_,. Let Py be the dominant path of €. We denote for Py,..., Pyip €
PL(e), i1, ... igrrw € N* and (8, m) <jez (v, n),
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Pl, ce ey Pk; o) k 00
elBm) P,m, oy Pow | = =k In |Py(i)] + 32X In | P(i)|
i i i=0 j=li=i;
1 k+k
k
-2 > Ing Ky
g=1 v>a,feN*
v | Polkp,) =5 iy =5 Pj(kp))
+00 k+k' +oo
K Y kst Y. 3 |Py(i)]
t=m+2 j=k+1i=i;
k+K

-2 > Ing
j=k+1 v > 3,0 € N*
v | ky =% Pjkp)

We now define E?k”,z,) as follows:

Pl,...,Pk (8,m)

,m

elBm) Pria, .o Pegw EEl,kak’
Uy oo oy Ukt

@Pl,...,PkEP]L(g)\{Po}
VAN Pk+17--'7pk+k’ GP]L(E)

AN 1,0 €N
A Uty lpgr € N
N Vjiel[l; k+kz’]] 35 e€0; j—1]
Vie[0; i —1] Pp(i) = P(i)
A Vje[[k+1;k+k’]]
P,....P
supp P;(i;) C supp e®™ | Pryq, ..., P,
i,y
U ESY (B.m) # (an)
Ef,@,m): keN, k'eN* "
UElkO (B,m) = (a,n)

keN
Define sets ES*™ as follows:

o I (8.m) # (a,n), then
— Z Iny k_ 8 — Z lnglﬁ_,y/ — Zlnwtv c E(ﬁm)

l=m+2 v/ <y, LeN*
iff v > B, p € N and there is some P € P (e) such that k_, =% P(kp)

o If (B,m) = (a,n), then
o S (8m)
2[R = X k=) Ingry € By
J=0 y>(>a, LEN* =1

iff v > a, p € N and there is some P € Py(e) such that k_, =% P(kp).

Let also
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E:gﬁ’m) _ {_ i lnf K—p | P > m+2} (ﬁ7m> 7£ (a’n)

l=m—+2

and <E(ﬁ’m)> be the monoid it generates. Finally, let HP™) defined by cases

as follows:
(

> Iny, ¢
(C;p) >le:r: (Bam)
¢ | k¢ =X Py(kp,)

+00
- X Inprc- Y IlR),

(/va)<lez(<7p)<lea: (Oz,n) 1=0

S Ingac— S |BG) b (B.m) £ (a.n)

(Cap) Zlez (Oé,’n,) =0
C I H—C EK P(](kpo)
\ {0} (B8,m) = (a,n)
+0o0
Let b e | supp®U(w?). Then, there are n € HE™ gnd y e <E(5’m)> cuch
q=0

that
w® =< d(In,, k_g) exp(e + 1+ y)
Proof. We prove it by induction on gq.
e If b € supp ®°(w?), then b = a and y = 0 with (3,m) = (o,n) and
1n = 0 works.

e Assume the property for some ¢ € N. Let b € supp ®41(w®). Then
there is ¢ € supp ®9(w®) such that b € supp ®(w). Apply the induction
hypothesis on c. Take (3,m), n € H®™ and y € <E(B’m)> such that

w® =< J(In,, B) exp(e + 1+ y)

> If (B,m) <iex (a,n), then y,e < In, 4y K_g. Hence, using Lemma
7.11 we get that there is P € Pr(e + 7+ y) such that

+00
W< d(n, Kk g)exp |l e+n+y— > Ingr g
l=m-+2

+00
— > Inyk_y+ ) In|P(7)
v > 3,0 €N* =0
v | oy =5 P(kp)
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If P(0) a term of €, up to some real factor, then there is a real

number s and some e € E%T) such that

+oo +00
sexpe=cexp | — >, Inyrpg— > Ingry+ > In|P(i)]
v | R—~y EK P(kP)

Then y+e € (E¥™) and w® < 9(In,, k_3) exp(e +y+e). If not,

then P(0) is a term of i+ y. Hence, we have the following cases:

- P(0) = sln, k_g for some s € R* and p > m + 2. Then,

+00 +00
- > Ik g— > Ing ko + > In|P(3)]
v | ke =5 Plkp)

- (8.m)
=lInls|— > Inyrk_p€lnls|+ E5”

f=m~+2
Then,
+00 +00
Y — Z lngl'i,g— Z 1Dg/€77+21n|P(i>|€
l=m+2 > 675 c N* =0
7| Ky 2 P(kp)
R + (EBm))

- P(0) = sln, k_, with v > § and p € N* such that there is
some path @ € Pp(g) such that k_g = Q(kg). Then

+00 +00
— > Iyrkpg— > Inyk,+ > In|P@l) €
v | ko =5 P(kp)
In|s| + ES™
Then,
+00 +00
y— > Ingk_pg— > Ingk_y+ > In|P(i)| €
l=m+2 v > B,0 e N* =0
v | ey =5 P(kp)
R + (EBm))
" There are some paths Pi,..., P.x € PL(e) and some inte-
gers i1, ..., 4. p such that
P,....,B
e(ﬁ’m) Pk:—Ha cey Pk+k’ S Eii’j:,)
Z.la T 7ik+k”
P,... P
and 3y € (E)  y=y +eP | Py, Py
S YR

and finally such that P(0) € Rz for some z a term of some
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ln\Pj(in/H’)\ Wlthj < [[O 3 k + k/]] and ik+k/+1/ Z ’Lj Let
Py 11 be the following path :
Pi(i) i <y
Pk+k/+1(i) = z 1= ik+1/ +1
Pli—ip'—1) i>04"+1
Then, Pyyr+1 € P(e). Moreover,

(9Pk+k/+1 = 5(0) s Pj(ik—i-llz oP
0 #0

Then Pyir41 € PL(e). Note also that for all g,
K_p EK Pk+k'+1(kpk+k/+1) = K_g3 EK P(kp)

Finally,
+00 +o0
— > Inyrk_pg— > Ingk_y + > In|P(i)|
{=m+2 v > 575 c N* =0
v | Ky 25 Plkp)
+0o0
= — Z In, K_g— E In, R—~
f=m+2 ~v > fp,fcN*
V| ke =5 Poywya(kp, )
+00 ) P 0
b8 P+ 2
i:ik+1,+1
€R?,
From that we derive that
400 oo
y— > Ingr_g— > Ingky + > In|P(7)]
{=m+2 v > 8,0 € N* =0
7 | K =K Plkp)
P,....P
? 3 P O
=y +eP | Py, Poywa | +1n i )‘ eER+ (EBm™)
ila s 7ik+k'+1

where ik+k’+1 = ik+k’+1/+]— and Pk—i—k’—}—l(ik—i—k’) = z has indeed
its support (which is reduced to a singleton) included in the

P, ... P
one of 6(5’m) Pk+k/’ c 7Pk+k/
il, R 7ik+k’

Then there is a real number s, and e € <E(57m)> such that
w® =< d(In,, B) exp(e + 1+ e+ s) < d(In,, B) exp(e + 1 +¢e)
Then we get the property at rank ¢ + 1.

> If (6,m) = (o, n), we have n = 0 and write

P.... . P
y:y/+e(a,n) %)
il? s 7'L.k:+k:’
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with, y' € (E¥™) and, k, k' € N. Using Lemma we have

- First case : W’ < Quexp(e +y +e)
where
+00 P y
e=— 3 lng/{_7+21n‘<z—+.j>‘
v >a,leN* J=0 PO(j)

v | Po(kp,) = Ky =% P(kp)
for some path P € Pp(e + y) and some 7 € N such that
vielosi—1]  P@) = R(j)
Indeed, y € <E(O"”)>. In particular, y < € and then e +y ~ ¢
so that Py is also the dominant path of € 4 y.

- If P(0) is, up to a real factor, a term of &, then we get
that there is some path @ € PL(¢) and a real number s

such that
Pla"'7PkaQ
y+e=y +efm %) + s
ST )
Since y < ¢, and P # Py, we also have ) # F,. Then

y+ec <E(ﬁ’m)> + E%Tfk, + 5. Let

y' =y+e—se (EEM)
then, wb < duexp(e + y")
In particular, 3" < e.

- If P(0) is a term of y, and more precisely if it can be
written as P(0) = sln,k_, for s e R, pe Nand v > «
such that

Po(kp,) =" kiy =% Q(kq)
for some path @ € PL(e) \ {Fo}. Then,

oo p+i
e=—> In|R(j)| — > Ingk_¢—> Ingk_+
3=0 =1

y>(>a, LeN*
li—oln|s| € ES"™ + R
Then y+e—In|s| € (E¥™) and since e < €, y+e—s < &
and
w’ < duexp(e +y+e —In|s|)

- If P(0) is a term of y, and more precisely if it can be
written as P(0) = sln|P(j)| for some s € R and some
¢ € [0; k+ K] (actually it is true if we have chosen
well the 3 in the beginning, but up to a renaming, it is
true). Consider the following path
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_ | B pr<y
Q) = {P(pfj) p>j
We have @) € PL(¢) and

P17~-'7P/<:7Q
y+e=1y +ebm @ +1Ins|
ilv"'uikaj
Then y+e—In|s| € (E¥™) and since e < &, y+e—s < &

and
w’ =< Quexp(e +y+e—1Inls|)
This concludes the first case.
"+ Second case : There are (8, m') <ier (a,n) and ' € HB™

such that w® =< d(In,y k_g) exp(e+n'+y). This immediately
conclude the second case.

We then have the property at rank g + 1.

Thanks to the induction principle, we conclude that the property holds for
any q € N. O

Corollary 7.5. Let x be a surreal number such that

Ju=1In,k_o drg € R* dag € No Va € suppr de~ rw® >
Inu w? < Quexpe
1) = rw®
Let Polz) = {P € Pulx) ' Vi>1 P}g(g + {;UN In |P(i) }
It is the set of all the possible dominant paths of the epsilon to which we add
the corresponding term of x at the beginning. We denote for Py € Po(x),
Pi,..., P € PL(x), i1y ..o yigrw € N* and (B,m) <ier (a,n),

PO;P17"~7P/€ 00 +00
B Popr, oo Pogw | = =k In|Py(i)] — K Y. Ingrg
i i , i=1 l=m+2
1y« bk+k

k
- 2 Ing
Jj=1 ¥ > a,leN*
v | Po(kpy) =5 kv =K Pj(kp))

k oo )

£33 In|P0)

j=li=i;

k+k'
- > >, Ingr,

j=k+l v > B (e N*

Y | K*’Y EK Rj(kpj)
k+k' +oo

+ 20 > In[F()]

j=k+1i=i;
We now define E?kng,) as follows:
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P();P17"'7Pk
ePm N Peya,.o, Py | € EEB’;Z’)
Z.l,...,ik—&-k’/

<:>PoEP@($>AP1,---,PkEPL(g)\{PO}
VAN Pk+17...’Pk+k/ EPL(.’L‘)

VAN il,...7ik€N*
A gyt T € N {0, 1}
AN Vje[l; k—}—k:’]] 35/ €0 j—1]
Viel0:i-1] Pi)= Py
N Vjelk+1; k+k’]]
P();Pl,. ,Pk
supp P;(i;) € suppe®™ ( Piyy,..., P,
i,
EGR) (8,m) # (a,m)
E§va): keN, k/eN*

UESY  (8.m) = (a,n)

keN
Define sets ES*™ as follows:

e If (B,m) # (a,n), then

- Z Ingk_g— >, lnglﬁl_,y/—Zhlg/{_,YEE(/Bm)
{=m+2 ¥y <y, LeN*

iff v > B, p € N and there is some P € Py(e) such that k_, =% P(kp)

e If (B.m) = (a,n), then

o0 p
~S PG - Y Ik — Y Ingk_, € B
j=0 /(=1

y>C>a, LEN*

iff v>a,p€eN, Py e Pyz), Po(kp,) =% k_, and there is some
P € Pi(e) such that k_, =% P(kp).

Let also
p
pm) _ {— > Ingrog ’ P2m+2} (B,m) # (a,n)
3 - f=m-+2
%]

and <E(6’m)> be the monoid it generates. Finally, let HP™) defined by cases

as follows:

e If (B,m) # (a,n), then
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Z lnp K_¢ — Z lnp K—¢
(¢, p) >iea (B,m) (Bim) <tez (¢P) tea ()
HBm) — ¢ | kg = Polkp,) Py € Po()
+00
=2 In|Fy(i)|
=0
+00
U Z lnp K¢ — Z In |P0(’L)’ Py e 770(95)
(C,p) Zlex (a,n) =0

¢ | K—¢ EK PO(kPo)
o If (ﬁ,m) = (aan)a then
H®™ = 1n|Py(x)| | Py € Po(z)}

+0o0
Let b € |J supp ®4(z). Then, there are n € HP™ and y € <E(B’m)> such

q=0
that

Oln,, k_
w’ < % exp(n + y)

Proof. Since @ is strongly linear, we just need to apply Proposition to
each term of z. Each path of Py(z) involved is shifted one rank. In H ™
we the add In|FPy(0)| compare to Proposition Then exp(n) gives also

|Ou exp ]. We just remove it so that it does not appear twice. O

Proposition 7.5. Let x be a surreal number such that there u of the form
u=1In,Kk_o, r € R* and ay € No such that rw® > Inu and

a0 w® =< Juexpe

P(1) = rw }
Vi>1 P(i+1)~1In|P(i)

Consider EV*™ , ES"™ and E?()B’m) as defined in Corollary . Let & be the
smallest ordinal such that k_¢ < P(kp) for all path P € Py(x). Let X the
least e-number greater than NR(z) and €. Then EP™ = Efﬁ’m) U Eéﬁ’m) U
E?()ﬁ’m) is reverse well-ordered with order type at most 2\ + w(§ + 1).

Va € suppxr e ~rw

Let Po(x) = {P € PL(z)

Proof. First notice that Eéﬁ ™) is reverse well-ordered with order type at
most w. Eéﬁ ™ is also reverse well-ordered with order at most w ® §. We

then focus on Efﬂ’m). For the moment, we will assume (8, m) <je, (a,n).

(i) We first claim that for all ¢ > 3 and all path P € P(z), P(i) < P(2) <
In,,+2 k_p. It is indeed the same proof as the point (i) of the proof of

Proposition [7.4]

(ii) We claim that for all path P € P(x), if P(2) < In,,1o £_g, then, if r is
the real number such that P(2) ~ rln,, ;o k_g, we have 0 < r < 1. It
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is indeed the same proof as the point (ii) of the proof of Proposition

(L4l

(iii) For all j and i > 2, In|P;(i)| < Inyy3k_g < Inyio kp. Indeed, using
(i), we know that P;(i) < In,, 1o £_g. Then, there is a natural number
m > 1 such that |P;(i)] < mln,,ok_g. Using the fact that In is

increasing,
In|P;(7)| <Inpyskp+Inm < In,i3k_p < Ing,0k_s

(iv) We now claim that |J Elkk, > U EIM, Indeed, using (ii) and

keN =
(iii) ife; € U E1 kk, then thereis s € [—(k + 1); —k] such that e; ~
kEN
slng, o k_g. Similarly, for ey € U Elﬁk’? 49, there is

s €[—(k+3);—(k+2)] such that ex ~ s 1nm+2 K—g-

(v) We define the following sequence :

@ (@(NR(2)+6+1)ap+1)
® Q41 = W

We show that Ef g 0) is reverse well-ordered with order type less than

m)

ap. We also claim that the equivalence classes of E1 no /= are finite

and that

NR Yo expt | <w(NR(z)+ &+ 1)ay
teE%ﬁij)

We show it by induction on k£ € N.

e For k = 0, E{%fg) = {0}. Then it is reverse well-ordered with
order type 1. We also have

NR| > expt]=NR(1)=1<w(NR(z)+£+1)

te By

e Assume the property for some k € N. Let t € Ef k+1)0 Let

(Py,0),(P1,i1), ..., (Pry1,ige1) minimal for the order (<jep, <)jex
such that
FPy; Py, ..., Peia
t = elBm) &
T

Then,
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Pg;Pl...,Pk +oo
t — eBm) %] — > In|Py(1)]
: : i=1

+00
- S Ing > In|Pea(i)

¥ > a,meN* =it
v I PO(kPO) >_K R—vy >—_K Pk+1(kpk+1)
Po; Pry ..., By
Write s = el®m) 10 and consider the following
(AP 7
path:
R(0) = exps
R(Z) = Pk+1(i —1 +ik+1) 1>0

It is indeed a path since, by definition of Eﬁg,m supp Pri1(ig11)

must be contained in supp s. We then have,
OR
(9P0[1 I]

expt =

Moreover, R € P, > exps |. By assumption on x, the

sGEﬁﬁk"g)

set { Py[1:] | Py € Po(x)} is a singleton. Therefore, so is the set

{0Py[1:] | Py € Po(x)}. By induction hypothesis and Proposi-

tion [1.12] Eﬁgo has order type less than

ww(w(NR(z)+§+l)ak+1)
w = Ok+41

Since the equivalences classes of Pr, >, exps | /=< are fi-

(B,m)
s€By L o

nite, the ones of Efﬁkrl)o /= are also finite. Finally, using Lemmas

and [6.18}
kep,—1
NR(t) < (w®&)+ >, NR(In|Py(7)]) + kp,
i=1
k+1Fp;—1 k41
+>- > NR(In|P;(i)]) + > max(0, kp, — i;) + 4
j=1 i=i; J=0

< w(NR(z) + £ +1)

Then, NR oooexpt’ | Kw(NR(z) + &+ Dagy

(B,m)
teB) i

We conclude thanks to the induction principle.
(vi) We have | Efk’jg) C <E§5{3)> Then, using (v) and applying Propo-

keN
sition it has order type at most w® < w4,
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(vii) We define the following sequence :

o by = w™
® by = e
We show that U Eﬁ”,z,) is reverse well-ordered with order type less

than bp. We also claim that the equivalence classes of (J E1 ok /A
keN
are finite and that

NR > expt | <Sw(NR(z)+ &+ 4)by
te U E(B ™)
We show it by induction on k&' € N.

e For k' = 0, we just apply (vi).

e Assume the property for some & € N. Let t € U Eii e Let
(Po,0)(P1,11), -+, (Pryirs1, iktar+1) minimal for the order
PO;Pl,...,Pk
(<iews <)iex such that t = e(Bm) PkH, .oy Piiwyr |- Then,
i1, s Ukt k/ 41
Py, Py, ..., P oo
t = e(ﬁ’m) Pk+17 o Pk—i—k’ - Z lng R_p
Wy Uk f=mt
- > s+ S I[P (i)
v > B, € N* =ikl
Y| ky =5 Proywia(kp, 0 y)
Py Pi,... P
Write s = e(#m) Piiv,..., Peyw |- We then have,
R T

1=ip41

+oo
O(In,, 41 K_pg) expt = exp(s) exp ( S In|Pryq(d)]

— Z 1I1m KR_p
e N*
V| Ry =8 Pogwsa(bp, )
Consider the following path:
R(0) =exps
R() = Pk+k/+1(i -1+ ik+1) i >0

It is indeed a path since, by definition of El n k/+17 supp Pryrr 1 (Gprrr11)
must be contained in supp s. Then,
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O(Iny,11 k-p)expt = OR

Moreover, R € P, > exp s |. By induction hypothesis
s€ U E(ﬁ 7”)

and Proposition |1.12] U E1 g k/+1 has order type less than

wu(w(NR(m)+£+4)bk/+1) i b
— Uk'+1

Since the equivalences classes of P, >, exps | /x are

(B,m)
s€ U E1 Py

finite, the ones of U Elkk,H/A are also finite. Finally, using

Lemmas [6.23] and [6.18 -

k+1k’Pj -1 k+1
NR(t) S (W@w®@EDw)+ > > NR(In|P;(i)]) + Y max(0, kp, — ;)
J=0 i=i j=0
< w(NR(z) + € +4)
Then, NR > expt’ | <w(NR(z)+ &+ 4)bps1
ve U B

We conclude thanks to the induction principle.

(viii) By easy induction, for all k € N, b < .

(ix) Using (iv), we get that for all N € N, kUOkUNEl k%, is an initial seg-
/ €

ment of |J U E1 " 2k’ We also have that U U E1 " 2k:’+1 is an initial
k' ENKEN k'=0keN

segment of |J | Efk”;,z,ﬂ Using (vii), we get that |J U B} " 7, has
k' €NkEN k' €NEEN
order type at most

NEN}:sup{b2N| NeN} < A

N
sup < @ bops
k=0 by (viii)

Similarly, U U Elﬁk%, 41 has order type at most \. Using Proposition
k'€NkeN

we conclude that Efﬁ ™ has order type at most 2.

Now we deal with the case (6,m) = (a,n). A close looking at point (v)
above reveals that the property it shows does not depend on (8, m). Then

we have, using a similar argument as in points (viii) and (ix), that (J E%7

kEN
has order type at most 2. Then, for any (5, m) <j. (a,n), Efﬁ’m) is reverse
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well-ordered with order type at most 2)\. Using again Proposition and
the properties of Eéﬁ ™) and EP(,B ) mentioned in the beginning of this proof,
we get that £(*™ is reverse well-ordered with order type at most 2\ +w(&+
1). [

7.2 Length of the series of the anti-derivative of an
arbitrary surreal number

Proposition 7.6. Let x be a surreal number. Let v be the smallest ordinal
such that k_, <% P(kp) for all path P € Pp(z). Let \ be the least e-

number greater than NR(x) and . Then | supp ®'(x) (see Definition|6.55
ieN
15 reverse well-ordered with order type less than W

+2

Proof. Let a <y andn € N. Write z = > r,w® For any ordinal a < 7,

acsupp
neN,r e R\ {-1} and any term sw®, define S, ,, 1 swe0 to be the set
In,k_o <€
€ ~ Sw*

a € suppx | Je € Noy Y(5,m) <jer (a,n) eln,, k_g

w?® =< 3(111” K,,a> expe
and consider also

Samor={a€suppr | Je € Noy, e~rin,k_ o Aw* =< 9(In, rk_,)expe}

Tayn,l,swi0 = Z Tawa and Tan2r = Z Tawa
aESaA,n,l,swa’O aes‘lyn»QaT‘

All theses surreal numbers have disjoint supports and

r = Z sza,n,l,swao + Z sza,n,Z,r

sw® cRwNoea<yneN TER\{—I}OK<’Y7Z€N

We then study both sums of the above equality.

o Theset {r € R\ {—1} | San2,r # @} is reverse well-ordered with or-
der type at most v(z). Let

So = U supp &* ( > 2 Zxa,n,w)

ieN reR\{—1}a<yneN
Since ® is strongly linear,

S< U U U U supp®(zanzr)

reR\{—1}a<yneNieN

Using Corollary , U supp @ (zan2,) is reverse well-ordered with
iEN

order type at most w*A*<0+D+1 Moreover, Lemma [7.1| ensure that
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is (a,n, 1) >ep (o, 0/, 7"), then | supp @ (2o n2,) < U supp @ (o p2)-

ieN ieN
We end up with the fact that |J supp @ S Y oo | I8
ieEN reR\{—1}a<yneN
reverse well-ordered with order type at most w®AM«0+D+0 (1),

Let Sl = U supp (I)Z ( Z Z Zxa,n,l,sw%)

ieN sw® eRwNoa<yneN

Since ® is strongly linear,

Sl g U U U U supp (I)i(xa,n,l,sw%)
sw0 cRwNoa<yneNieN
Denote HP™) (24 1 g0 )y EP™ (24 01,5000 ) the sets defined as in Corol-
lary for x4 5.1s0%. Then, using this corollary, S; is contained in
the set

U U U supp (M exp(n + y))

52y | Bom) Siew () penGme, .y \OMp kg

m €N a < v .
5w € RwN® S <E(§J’L)(zc¥,n,l,swa0>>

We also know that (o, n, sw™) >, (o, 0/, s'w), then the set

(8lnm K_

2 exp(n + y))

U supp Ooln, k_,,

ne H(ﬁ’m)(za,n,l,sw%)
AS <Ew"m)(wmn,1,swa0)>

is contained in the set

Oln,, k_p

U  supp (
ne H(Bm) (z al )
a’ n’ 1,s’w"0

e (s ()
Propositions and guarantee that all of theses sets are reverse
well-ordered with order type less than w?**. Let

EI exp(n + y))

0ln,, k_
Spm = U U supp ( b

a,n | (B,m) <jex (o, n) ne HB™ (@, 1 ag)
o<~ n,1,
5w ¢ RwNe

T gy +))

ve(EC™ (o, 1 wa0))

The set of possible sw? is reverse well-ordered with order type at
most v(x). Moreover, a and n are determined from sw®. Then Sg.,,
is reverse well-ordered with order type at most w?” " v(x). Finally,
if (8,m) > (B',m), then Sg,, C Sg ny and there are at most wvy

such couples. Then, S is reverse well-ordered with order type at most
sz\"'ll/(aj)’y.
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Both sets have order type less than wwAH, which is a multiplicative ordinal.

Using Proposition , U supp ®‘(z) has order type less than w
i€N

]

7.3 Stability of some surreal fields

We are ready to exhibit a surreal field that is stable under exp,In,d and
anti-derivation and that is not No itself. We actually have a lot of such
fields.

To get a field stable under derivation and anti-derivation, it sufficient that
the field is stable under exp and In, and, if for all 8 < «, k_g is in the field,
and if w ® « is less than the authorized length of a serie, then x_, must also
be in the field.

Main Theorem 7.7. Let a be a limil ordinal and (I's),_,, be a sequence
of Abelian subgroups of No such that

o Vi<a Vy<p I',CTg

o Vi <« wTe)i K K_cy

eVi<a Vy<ez ko, €w”

eVB<a Tnp<es Vrews NR(z) < 3

Teg
r
Then \JR:] is stable under exp, In, O and anti-derivation (see section

B<a
).
Teg

Proof. Let K = R£§ As an increasing union of fields, K is indeed a
B<a
field.

Teg
(i) Using Theorem each field ng is stable under exp and In, then
so is K.

(i) Write Fgeﬁ = (I'i3);,. - We use the notation introduce in the begin-
=
ning Definition[T.4, We prove by induction on i < 7, that for x € I'; g,
NR(w?®) < nge;.

e For i = 0 we have ¢g = 1 and I'y 3 = I'3. By assumption on I'g,
for all x € 'y g, NR(w”) < ng = ngep.
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e Assume the property for some ordinal 7. Then let z € I';; 5.

(Tip)3)

0

p

Write v =u+v+ > h(wy) withu e T 5, v € R?
k=1

such rw®* is a term of some element y;, € I'; 3, for some r € R.

Using Corollary
P
NR(w®) < NR(w") + NR(w’) + > NR(w"®»)) +p+1
k=1

and wy,

From induction hypothesis,

NR(w") < nge;

Write v = >"7;w9@). Then w' = exp | Y. r;w% |. From induc-
Jj<v Jj<v

tion hypothesis, NR(w%) < nge;. Then NR(r;w®) < nge; + 1.

Then

NR(w”) = NR (erw“j> < (npei+1)@v < (ngei+1)®e; < nge?
<v
We also have j
NR(w®¥)) = NR(w*"*) < NR(w¥) < nge;
Finally, NR(w®) < (p+ 1)(nge; +1) + nge? < ngeir1

Assume ¢ is a limit ordinal. Then by definition of I'; 3 for any
x € I'; g there is some j < ¢ such that € I'; 5. Then induction
hypothesis concludes.

Teg

(iii) Let # € K and 8 < a such that z € R.” . Using (i), there is i < 7.,

such that

NR(z) < (nge; + 1) @ v(z) <ng®eg = ep

Since nz®eg is a limit ordinal, then we also have NR(z)+1 < ng®e5 =

Teg

(iv) Let 2 € K and 8 < « such that = € ]Rgf . Using (iii) and Proposition

, v(0z) < w0 < g4 Using Corollary and (i), we also
te
have for all P € P(z), 0P € Rw's . Then,

r'°s
dreR.; CK

Then K is stable under 0.

Teg

(v) Let z € K and 8 < « such that = € ]R;f . Using Proposition |1.13

and the definition of A,
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v (A o (%cp) (x)) < W

where A is least e-number greater NR(x) and such that

VP € Pp(z) k_x <% P(kp)
Te
Using (iii), NR(z) < €4. Let P € Py(z). Using (i), R;f i is stable under
exp and In. Since P(i + 1) is a term of In |P(i)], if P(i) € w"#, then
P(i + 1) € w's. By induction, P(kp) € w's. Since P(kp) is infinitely
large, P(kp) € WT8) By assumption on I'g, P(kp) =" k_.,. Finally,
A <egand

" (A o (zqﬂ) (:1:)) <w <epn

ieN
Propositions and and the third assumption about I's ensure
that each term of Ao | Y &%) (z) is in w's C w's+1, Then

ieN

. FT55+1
Ao (Z(IDZ) (z) e RS
ieN

Application of Corollary gives that K is stable under anti-derivation.

]

The previous theorem may seem have a lot of strong hypothesis but we can
actually give a non-trivial application.

Take @« = w and for n < w, I, = {x € No., | NR(w") < €,-1}, with
£_1 := w. We first recall that from Lemma for any ordinal «,

—wRa

K_q = wW”

—wQ®en —en 1

in particular K_e, = wW" T = T = wem
From Theorem we know that the sign sequence of w™*®* is (+)(—)~®?,

which has length 1 & w ® a.

e Since ¢, is an e-number, hence an additive ordinal, for any n € N, I',,
is an abelian group.

e Of course for any n < m, I';, CT,,.

e Since |w™|,_ =1®w e, = &,, we have k_., ¢ w'?. However, for
< &y, WY, =10 w®a < &y, and, since k_, € L, NR(k_o) =
0 < en—1. Therefor, we have r_, € w'?. Since, k_., € WN°, is x € W'
is such that z <¥ K_c, then k., is a prefix of x and x|, _ > 5 what
is impossible from Lemma [5.24
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e We can take ng = c5_1 < g.

Theorem

1.11

applies and J REZ” is stable under exp, In, 0 and anti-
neN

derivation. As a final note, we can notice that

Ten
FTSn No
U R&_: et U REn En

neN neN
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