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Abstract. The class of surreal numbers, denoted by No, initially considered
by Conway, can be seen as a universal ordered field: if we forget that it is a class
but not a set, it is a field, and any ordered field can be embedded into it. In
particular, surreal numbers include all real numbers but also ordinal numbers.
Surreal numbers are known to have strong relations with other mathematical
objects, such as the field of transseries.

In this article, we exhibit a class of surreal fields that are closed under both
exponential and logarithmic functions. We actually present a strict hierarchy
of such fields inside the already known fields of literature.
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1. Introduction

Conway introduced the class of surreal numbers in [6]. The class of surreal numbers
were later on popularised by Knuth [14], and then formalised later on by Gonshor
in [11], and then studied by many other authors. The initial idea is to define a class
of numbers based on a suitable concept of “simplicity”. This leads to obtaining a
real closed field (if we allow fields to be built on a class and not a set) that contains
both the real numbers and the ordinals: indeed, the idea of Conway provides a
way to unify Dedekind’s construction of real numbers in terms of cuts of the ra-
tional numbers and von Neumann’s construction of ordinal numbers by transfinite
induction in terms of set membership.
As stated by [8], the class of surreal numbers can be considered to be “the” field
that includes “all numbers great and small”. In particular, any divisible ordered
Abelian group is isomorphic to an initial subgroup of No, and any real closed field
is isomorphic to an initial subfield of No [20, Theorems 9 and 19], [6, Theorems 28
and 29].
Following the alternative presentation from Gonshor in [11], based on some ideas
from Conway [6], a surreal number can also be seen as an ordinal-length sequence
over {+,−}, that we call a sign sequence. We call the ordinal length of the
sign sequence the length of the surreal number: we write |x|+− for the length
of the surreal number x. Basically, the idea is that such sequences are ordered
lexicographically and have a tree-like structure. Namely, a + (respectively −) added
to a sequence x denotes the simplest number greater (resp. smaller) than x but
smaller (resp. greater) than all the prefixes of x which are greater (resp. smaller)
than x. With this definition of surreal numbers, it is possible to retrieve Conway’s
original notion of cuts and the corresponding notion of simplicity. Using cuts, it is
also possible to define operations such as addition, subtraction, multiplication, and
division, providing a real closed field.
This vision of the surreal number leads naturally to consider some substructures by
fixing a bound on the length of the sign sequence. In that spirit, we write Noλ for
the set of the surreal numbers whose length is less than ordinal λ. The algebraic
structure of Noλ is well known: it is a group, a ring or a field iff λ is an additive1

ordinal, a multiplicative2 ordinal or an ε-number3 respectively ([20, 19, Corollaries
3.1 and 3.4, Proposition 4.7]).
Following Gonshor [11], based on ideas from Kruskal, it is also possible to define
in a natural way some functions, such as the exponential function and the loga-
rithmic function over No. The obtained functions are extensions of the classical
corresponding functions over the real numbers and provide a way to extend some
statements from classical mathematical analysis to this field of numbers.
The class No can also be equipped with a derivation ∂ so that it can be considered
as a field of transseries [3, 4]. See [18] for a survey of recent results in all these
directions. The class No can also be seen as a field of (generalised) power series
with real coefficients, namely as Hahn series, where exponents are surreal numbers

1An ordinal α is additive if for all β, γ < α, β + γ < α. It can we shown that it is equivalent
to the fact that α = ωβ for some ordinal β.

2An ordinal α is multiplicative if for all β, γ < α, βγ < α. It can we shown that it is
equivalent to the fact that α = ωωβ

for some ordinal β.
3An ordinal α is an ε-number if it satisfies α = ωα. In particular it is both additive and

multiplicative.
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themselves. More precisely, write K ((G)) for the set (resp. class) of Hahn series
with coefficients in K and terms corresponding to elements of G, where K is a
field, and G is some divisible ordered Abelian group (resp. class-group): This
means that K ((G)) corresponds to formal power series of the form s =

∑
g∈S agt

g,
where S is a well-ordered subset of G and ag ∈ K. The support of s is supp(s) =
{g ∈ S | ag ̸= 0} and the length of the serie of s is the order type of supp(s). Note
that in this definition, even if G is a class, we require S to be a set. The field
operations on K ((G)) are defined as expected, considering elements of K ((G)) as
formal power series. With this formalism, it appears that, up to isomorphism, the
following holds: No = R ((No)). Indeed, as proven by Conway [6] and Gonshor [11],
every surreal number has a normal form: it can be uniquely written as x =

∑
i<ν

riω
ai

where ν is an ordinal, (ri)i<ν are non-zero real numbers and (ai)i<ν is a decreasing
sequence of surreal numbers. We will call ν the series-length of x and will denote
ν(x).
In this article, we show that there are “small” acceptable subfields of No that are
closed under exponential and logarithmic functions. These fields are built with
some restrictions on ordinals allowed to get involved in either the length of the
Hahn series or in its exponents.
Given some ordinal γ (or more generally a class of ordinals), we write K ((G))γ for
the restriction of K ((G)) to formal power series whose support has an order type
in γ (that is to say, corresponds to some ordinal less than γ). We have of course
No = R ((No))Ord. In this point of view, ε-numbers, i.e ordinals λ, such that
ωλ = λ, play a major role as they are essential to handle field operations and the
exponential function.
As we will often play with exponents of formal power series considered in the Hahn
series, we introduce the following notation: We denote

RΓ
λ = R ((Γ))λ

when λ is an ε-number and Γ a divisible Abelian group.
From MacLane’s theorem ([17, Theorem 1], see also [1, Section 6.23]), we know
that RNoµ

λ is a real-closed field when µ is a multiplicative ordinal (i.e. µ = ωωα

for some ordinal α) and λ an ε-number.
We now introduce some notations to state our main theorems.
We first need to associate a canonical sequence to any ε-number.

Definition 1.1 (Canonical sequence defining an ε-number). Let λ be an ε-number.
Ordinal λ can always be written as λ = sup (eβ)β<γλ

for some canonical sequence,
where γλ is the length of this sequence, and this sequence is defined as follows:

• If λ = ε0 then we can write ε0 = sup{ω, ωω, ωωω

, . . . } and we take
ω, ωω, ωωω

, . . . as canonical sequence for ε0. Its length is ω, and for β < λ,

eβ is ω . .
.
ω

where there are β occurrences of ω in the exponent.
• If λ = εα, where α is a non-zero limit ordinal, then we can write λ = sup

β<α
εβ

and we take (εβ)β<α as the canonical sequence of λ. Its length is α and for
β < α, eβ = εβ .

• If λ = εα, where α is a successor ordinal, then we can write

λ = sup{εα−1, εα−1
εα−1 , εα−1

εα−1
εα−1

, . . . }



4 O. BOURNEZ AND Q. GUILMANT

and we take εα−1, εα−1
εα−1 , εα−1

εα−1
εα−1

, . . . as the canonical sequence of

λ. Its length is ω, and for β < ω, eβ = εα−1
. .
.
εα−1

where there are β
occurrences of εα−1 in the exponent.

For example, here are some canonical sequences for some ε-numbers:
ε-number Canonical sequence

ε0 ω, ωω, ωωω

, . . .

ε1 ε0, ε0
ε0 , ε0

ε0
ε0
, . . .

ε2 ε1, ε1
ε1 , ε1

ε1
ε1
, . . .

...
...

εω ε0, ε1, ε2, . . .
...

...
εω2 ε0, ε1, ε2, . . . , εω, εω+1, . . .

εω2+1 εω2, εω2
εω2 , εω2

εω2
εω2

, . . .
...

...

Main contributions of this paper.

Definition 1.2. Let Γ be an Abelian subgroup of No and λ be an ε-number whose
canonical sequence is (eβ)β<γλ

. We denote Γ↑λ for the family of group (Γβ)β<γλ

defined as follows:
• Γ0 = Γ;

• Γβ+1 is the group generated by Γβ , Rg((Γβ)
∗
+)

eβ and
{
h(ai)

∣∣∣∣ ∑
i<ν

riω
ai ∈ Γβ

}
where g and h are Gonshor’s functions associated to exponential and loga-
rithm (see Section 3.2 below or [11] for some details);

• For a limit ordinal number β, Γβ =
⋃

γ<β

Γγ .

When considering a family of set (Si)i∈I , we denote

R(Si)i∈I

λ =
⋃
i∈I

RSi

λ

in particular, RΓ↑λ

λ =
⋃

i<γλ

RΓi

λ

Remark. By construction, if Γ ⊆ Γ′ then RΓ↑λ

λ ⊆ RΓ′↑λ

λ .

Remark. The idea behind the definition of Γ↑ is that at step i + 1 we add new
elements that we will prove to yield closure of RΓi

λ under exponential and logarithm.

The reason why we add Rg((Γβ)
∗
+)

eβ to Γβ rather than Rg((Γβ)
∗
+)

λ is that we want to
keep control on what we add in the new group.

With these notations, we are now ready to state our main theorems. The three
following theorems decompose Noλ into a strictly increasing hierarchy of subfields,
each of them being closed under exponential and logarithm.
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Theorem 1.3. Let Γ be an Abelian subgroup of No and λ be an ε-number, then
RΓ↑λ

λ is closed under exponential and logarithmic functions.

Theorem 1.4. Let λ be an ε-number. Noλ =
⋃

µ R
Noµ

↑λ

λ , where µ ranges over the
additive ordinals less than λ (equivalently, µ ranges over the multiplicative ordinals
less than λ).

Theorem 1.5. For all ε-number λ, the hierarchy in Theorem 1.4 is strict:

RNoµ
↑λ

λ ⊊ RNoµ′ ↑λ

λ

for all multiplicative ordinals µ and µ′ such that ω < µ < µ′ < λ.

Relation to state of the art. This hierarchy is to be compared with the one
given by [20, Proposition 4.7], which states

Noλ =
⋃

µ R
Noµ

λ

where again µ ranges over the additive ordinals less than λ (equivalently, µ ranges
over the multiplicative ordinals less than λ). Although Noλ is indeed closed under
exponential and logarithmic functions ([19, Corollary 5.5]), none of the fields RNoµ

λ

is:

Proposition 1.6. RNoµ

λ is never closed under exponential function for µ < λ a
multiplicative ordinal.

Under the assumption of Theorem 1.3, the fields RΓ↑λ

λ are closed under exp and ln.

Organization of the paper. The remaining of the paper is organised as follows:
• In Section 2, we introduce the notations we use about well-ordered sets and

ordinals numbers. We also state some known useful results about them.
• In Section 3, we present all the properties about surreal numbers. It con-

tains mostly already known results but also some new useful lemmas such
as Lemmas and 3.23 and 3.24 with their Corollary 3.25.

• Section 4 is dedicated to the proof of Theorems 1.3, 1.4 and 1.5 and also
Proposition 1.6.

2. Well ordered sets toolbox

Before working with surreal numbers, we must state some statements about ordinal
numbers and well-ordered sets. We assume some familiarity with these concepts.
For an introduction, see for instance [5, 7, 10, 12, 16].
In this section, we introduce the notations we use for operations over ordinal num-
bers, and we state a useful technical proposition we will use later.
Considering ordered sets, we need the following notions.

Definition 2.1. Let (S,≤) a (partially) ordered set and A,B ⊆ S. A and B are
cofinal if for any b ∈ B, there is a ∈ A such that b ≤ a and for any a ∈ A there is
b ∈ B such that a ≤ b. Similarly, A and B are coinitial if for any b ∈ B there is
a ∈ A such that a ≤ b and for any a ∈ A there is b ∈ B such that b ≤ A.

Example. For example, {0} and N are coinitial. Also, Z and R are coinitial and
cofinal.
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Well-orders and ordinal numbers are strongly related. Through the following fa-
mous statement, ordinal numbers might be considered as canonical representatives
of well-ordered sets (see, e.g. [13] for proofs of the statements of this section unless
an explicit reference to a proof in literature is mentioned).

Theorem 2.2. Let (X,<) be a well total order. There is a unique ordinal which
is order-isomorphic to (X,<).

Definition 2.3 (Order type). We call the ordinal which isomorphic to a well or-
dered set, its order type.

Cardinal numbers can be seen as special ordinal numbers.

Definition 2.4 (Cardinal). A cardinal κ is an ordinal such that for all α ∈ κ,
there is no bijection between α and κ. A cardinal is regular if for any morphism
φ between α ∈ κ and κ, φ is bounded above, i.e there is some β ∈ κ such that for
all γ ∈ α, φ(γ) ∈ β.

Example. ω is regular, as well as ω1 the first uncountable ordinal.

Cardinal ω1 and other regular cardinals can be considered as “huge” ordinals. In
fact, they can be associated with models of the Set Theory [13]. The literature has
considered regular cardinals in order to define subfields of surreal numbers with
exponential and logarithm [15], or for generalisations of R [9]. In this article, our
aim is to define some subfields with exponential and logarithm functions but with
“small” ordinals.
We will consider ordinals with their classical operations, such as addition, multipli-
cation, and exponentiation.

Definition 2.5 (Usual operations). The usual addition, ⊕, the usual multiplication
⊗ and the exponentiation over ordinal numbers are defined as follows: for all ordinal
numbers α and β,

• α⊕ 0 = α.
• α⊕ 1 = α ∪ {α}.
• α⊕ (β ⊕ 1) = (α⊕ β)⊕ 1
• If β is a limit ordinal, α⊕ β = sup {α⊕ γ | γ < β}.
• α⊗ 0 = 0
• α⊗ (β ⊕ 1) = (α⊗ β)⊕ α
• If β is a limit ordinal, α⊗ β = sup {α⊗ γ | γ < β}.
• α0 = 1
• αγ⊕1 = αγ ⊗ α
• If β is a limit ordinal, αβ = sup {αγ | γ < β}.

These operations are not commutative and ⊗ is not distributive over ⊕.
We will also need to talk about the so-called natural (or Hessenberg) addition and
multiplications, which is a nice generalisation of the corresponding operations over
integers based on Cantor’s Normal Form. Formally.

Theorem 2.6 (Cantor, [5]). Let β ≥ 2 and α be ordinal numbers. Then α can be
written in a unique way as

βe1k1 ⊕ βe2k2 ⊕ · · · ⊕ βenkn
with 0 ≤ ki < β and e1 > e2 > · · · > en > 0 being ordinal numbers.
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We call such an expression the normal form in base β of the ordinal α. The
special case β = ω is called the Cantor’s normal form.

Definition 2.7 (Natural4 addition and multiplication, [12]). Let α =
n∑

i=1

ωαiki and

β =
m∑
j=1

ωβj lj be two ordinal numbers in Cantor’s normal form. Let p the number of

element in the finite set {αi}i ∪ {βj}j . Let γ1 > · · · > γp a decreasing enumeration
of this set. Up to set ki = 0 or lj = 0, we assume, without loss of generality
n = m = p and for all i ≤ p αi = βi = γi. We then define natural addition by

α+ β =
p∑

i=1

ωγi(ki + li)

and natural multiplication by

α× β =
∑
i,j

ωαi+βjkilj

where the symbol
∑

denotes a natural addition.

We finish this section with a useful proposition about the order type of a monoid.

Proposition 2.8 ([21, Weiermann, Corollary 1]). Let Γ be an ordered Abelian
group and S ⊆ Γ+ be a well-ordered subset with order type α. Then, ⟨S⟩, the
monoid generated by S in Γ is itself well-ordered with order type at most ωα̂ where,
if the Cantor normal form of α is

α =
n∑

i=1

ωαini

then α̂ =
n∑

i=1

ωα′
ini

and β′ =

{
β + 1 if β is an ε-number

β otherwise
In particular, ⟨S⟩ has order type at most ωωα (commutative multiplication).

3. Surreal numbers toolbox

3.1. Generalities. Surreal numbers were first introduced by Conway [6] using an
approach based on cuts, unifying the approach of Dekekind’s cuts for defining real
numbers, and Von Neuman’s approach for defining ordinal numbers. Conway also
suggested a representation using a sign sequence. The approach based on sign se-
quences was later fully formalised and more deeply explored by Gonshor. In partic-
ular, this is the main approach for all definitions and all fundamental constructions
in [11].
Following this view, a surreal number x can be seen as a function x : α → {+,−}
where α is an ordinal number. We call ordinal α the length of x, and we write it
by |x|+−. A surreal number y is a prefix of x if |y|+− ≤ |x|+− and

∀β < |y|+− y(β) = x(β)
In this case, we write y ⊑ x. If moreover y ̸= x we write y < x.
The alternative construction is based on cuts, and sureal numbers are seen as being
born at some ordinal steps. A first surreal number of length 0 is born, then 1, etc.

4Also called Hessenberg addition and Hessenberg multiplication
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After a surreal number of length ω appears and so on. More generally if L and R
are two sets of previously defined surreal numbers such that L < R, i.e

∀ℓ ∈ L ∀r ∈ R ℓ < r
then [L | R] is defined to be the shortest surreal number which lies in between L
and R for the lexicographic order (with − < □ < + and □ is a blank symbol).
In particular, [∅ | ∅] = 0 and 0 is identified with the empty sign sequence. If
x = [L | R] and L ∪ R = {y | y < x} we say that [L | R] is the canonical
representation of x. Operations can be defined using these cuts as follows: for
all surreal numbers x, y ∈ No

x+ y =
[
L+
x,y

∣∣ R+
x,y

]
with L+

x,y =

{
x′ + y, x+ y′

∣∣∣∣ x′ < x x′ < x
y′ < y y′ < y

}
and R+

x,y =

{
x′′ + y, x+ y′′

∣∣∣∣ x′′ < x x < x′′

y′′ < y y < y′′

}
also xy =

[
L×
x,y

∣∣ R×
x,y

]
with L×

x,y =

 x′y + xy′ − x′y′

x′′y + xy′′ − x′′y′′

∣∣∣∣∣∣∣∣
x′, x′′ < x
x′ < x < x′′

y′, y′ < y
y′ < y < y′′


and R×

x,y =

 x′y + xy′′ − x′y′′

x′′y + xy′ − x′′y′

∣∣∣∣∣∣∣∣
x′, x′′ < x
x′ < x < x′′

y′, y′′ < y
y′ < y < y′′


Although it is not trivial, it can be checked that this defines field’s5 operations (see
[11] for details).
With these operations, we can identify the integer n with the surreal number con-
sisting of exactly n pluses. We use the same notation, n, to denote the corresponding
surreal number. In fact, to be slightly more general, we can even identify all the
surreal numbers whose lengths are finite to dyadic6 numbers.
Having the integers we can now get a notion of order of magnitude. For instance,
the surreal consisting in ω pluses is greater than any integer and thus has a higher
order of magnitude.

Definition 3.1. We define the following relations for a and b two surreal numbers:
• a ≍ b iff there is some natural number n such that n|a| ≥ |b| and n|b| ≥ |a|.

We say that a and b have the same order of magnitude.
• a ≺ b iff for all natural number n, n|a| < |b|. We say that b has a higher

order of magnitude than a.
• a ⪯ b iff a ≺ b or a ≍ b. We say that b has at least the same order of

magnitude as a.
• a ∼ b iff a− b ≺ 1. We say that a and b are equivalent.

The relation ⪯ is a preorder and ≍ and ≺ are the associated equivalence relation
and strict preorder respectively. We can then try to look at the equivalence classes.
The equivalence classes for ≍ are called the Archimedean classes.

5Note that it is not a proper field since No is a proper class and not a set.
6Numbers of the form k/2n with k ∈ Z and n ∈ N.
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Theorem 3.2 ([11, Gonshor, Theorem 5.1]). For any non-zero surreal number a,
there is a unique shortest positive element x such that x ≍ a. More precisely, if
y ≍ a and y > 0 then x ⊑ y.

Having such a candidate for a canonic representation of each equivalence class, we
can ask for a better characterization. It turns out that it can be defined in an
exponentiation-like way.

Definition 3.3. We define for all x = [x′ | x′′] in canonical representation,

ωx =
[
0,R∗

+ω
x′

∣∣∣ R∗
+ω

x′′
]

An element of the form ωx will be called a monomial.

Almost by definition, if x < y then we have ωx ≺ ωy and it turns out that each ωa

represents its class for ≍.

Theorem 3.4 ([11, Gonshor, Theorem 5.3] and [6, Conway, Theorem 19]). A
surreal number x is of the form x = ωa if and only if it is the shortest positive
element in its Archimedean class.

Definition 3.5 ([11, Gonshor, page 59]). Let (ai)i<ν be an ordinal-length decreas-
ing sequence of surreal numbers and (ri)i<ν be non-zero real numbers. We define
by transfinite induction :

•
∑
i<0

riω
ai = 0

• If ν = ν′ + 1 then
∑
i<ν

riω
ai =

∑
i<ν′

riω
ai + rν′ωaν′

• If ν is a limit ordinal then∑
i<ν

riω
ai=

[{∑
i<ν′

riω
ai +(rν′ − ε)ωaν′

∣∣∣∣∣ ν′ < ν
ε ∈ R∗

+

}∣∣∣∣∣
{∑

i<ν′

riω
ai +(rν′ + ε)ωaν′

∣∣∣∣∣ ν′ < ν
ε ∈ R∗

+

}]

If x =
∑
i<ν

riω
ai , we will call this writing the Conway normal form or simply the

normal form of x. An element of the form rωa with a ∈ No and r ∈ R will be
called a term. In particular, a monomial is a term. Finally, if x =

∑
i<ν

riω
ai we

denote ν(x) = ν the length of the series in the normal form of x.

Theorem 3.6 ([11, Gonshor, Theorem 5.6] and [6, Conway, Theorem 21]). Every
surreal number can be uniquely expressed in the way x =

∑
i<ν

riω
ai .

Definition 3.7 (Term). Given a surreal number a =
∑
i<ν

riω
ai , for all i < ν we say

that riω
ai is a term of a.

Definition 3.8. A surreal number a in normal form a =
∑
i<ν

riω
ai is

• purely infinite if for all i < ν, ai > 0. If K ⊆ No is a subfield of No,
we denote K∞ the set (or class) of purely infinite numbers in K. We also
denote K+

∞the set (or class) of non-negative purely infinite numbers.
• infinitesimal if for all i < ν, ai < 0 (or equivalently if a ≺ 1).
• appreciable if for all i < ν, ai ≤ 0 (or equivalently if a ⪯ 1).
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If ν′ ≤ ν is the first ordinal such that ai ≤ 0, then
∑
i<ν′

riω
ai is called the purely

infinite part of a. Similarly, if ν′ ≤ ν is the first ordinal such that ai < 0,∑
ν′≤i<ν

riω
ai is called the infinitesimal part of a.

In his book, Gonshor explains how to retrieve the sign sequence from the normal
form. In the following, a[: α] is the prefix of length α of the surreal number a. Also,
|a|+ is the (ordinal) number of pluses in the sign sequence of a.

Theorem 3.9 ([11, Gonshor, Theorems 5.11 and 5.12]). For a surreal number a,
• The signs sequence of ωa is as follows: we start with a plus and for any

ordinal α < |a| we add ω|a[:α]|++1 occurrences of a(α).
• The signs sequence of ωan is the signs sequence of ωa followed by ω|a|+(n−1)

pluses.

• The signs sequence of ωa 1

2n
is the signs sequence of ωa followed by ω|a|+n

minuses.
• The signs sequence of ωar for r a positive real is the signs sequence of ωa

to which we add each sign of r ω|a|+ times excepted the first plus which is
omitted.

• The signs sequence of ωar for r a negative real is the signs sequence of
ωa(−r) in which we change every plus in a minus and conversely.

• The signs sequence of
∑
i<ν

riω
ai is the juxtaposition of the signs sequences of

the ωa◦
i ri

Lemma 3.10 ([20, van den Dries and Ehrlich, Lemma 4.1]). For all surreal number
a ∈ No,

|a|+− ≤ |ωa|+− ≤ ω|a|+−

Lemma 3.11 ([11, Gonshor, Lemma 6.3] and [20, van den Dries and Ehrlich,
Lemma 4.2]). Let x =

∑
i<ν

riω
ai a surreal number. We have:

• ν ≤ |x|+−
• for all i < ν, |riωai |+− ≤ |x|+−
• if there is some α such that or all i < ν, |riωai |+− ≤ α, then |x|+− ≤ αν.

3.2. Exponential and logarithmic functions. In his book [11], Gonshor shows
that there are two functions exp : No → No∗

+ and ln : No∗
+ → No that are

reciprocal to each other and that extend the corresponding functions over R with
the usual properties about them. He also gave the definition of two useful auxiliary
functions g and h that help to characterise exp and ln respectively. For a complete
introduction of these functions see [11].

Definition 3.12 (Gonshor’s g and h functions). We fix the notation for the fol-
lowing functions:

• g : No∗
+ → No satisfies for all x ∈ No∗

+,

g(x) = [c(x), g(x′) | g(x′′)]

where c(x) is the unique number such that ωc(x) ≍ x and where x′ ranges
over the lower non-zero prefixes of x and x′′ over the upper prefixes of x.
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• h : No → No∗
+ satisfies for all x ∈ No∗

+

h(x) =

[
0, h(x′)

∣∣∣∣ h(x′′),
ωb

n

]
where x′ ranges over the lower prefixes of x and x′′ over the upper prefixes
of x.

The exponential function then satisfies the following:

Theorem 3.13 ([11, Theorems 10.2, 10.3 and 10.4]). For all r ∈ R and ε infini-
tesimal, we have

exp r =

∞∑
k=0

rk

k!
, exp ε =

∞∑
k=0

εk

k!
and exp(r + ε) = exp(r) exp(ε) =

∞∑
k=0

(r + ε)k

k!

Moreover for all purely infinite numbers x,

exp(x+ r + ε) = exp(x) exp(r + ε)

Proposition 3.14 (Function g, [11, Theorem 10.13]). If x =
∑
i<ν

riω
ai is purely

infinite, then

expx = ω

∑
i<ν

riω
g(ai)

The logarithmic function satisfies the following:

Proposition 3.15 ([11, Theorems 10.8, 10.9, 10.12 and 10.13]). For all surreal
number a =

∑
i<ν

riω
ai , we have

lnωa =
∑
i<ν

riω
h(ai)

As a consequence of Theorem 3.13, ln satisfies the following

Corollary 3.16. For x an infinitesimal,

ln(1 + x) =

∞∑
i=1

(−1)i−1xi

i

Corollary 3.17. Let a =
∑
i<ν

riω
ai be a positive surreal number. Then

ln a = lnωa0 + ln r0 + ln

1 +
∑

1≤i<ν

ri
r0

ωai−a0


We will use the following properties of the functions g and h:

Proposition 3.18 ([11, Theorem 10.14]). If a is an ordinal number then

g(a) =

{
a+ 1 if λ ≤ a < λ+ ω for some ε-number λ

a otherwise

Proposition 3.19 ([11, Theorem 10.15]). Let n be a natural number and b be an
ordinal. We have g(2−nω−b) = −b+ 2−n.

Corollary 3.20. If a is an ordinal number then h(−a) = ω−a−1.
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Proof. It is a direct consequence of Proposition 3.19 and the fact that h = g−1. □

Lemma 3.21 ([20, Lemma 5.1]). For all a ∈ No, |g(a)|+− ≤ |a|+− + 1.

Lemma 3.22 ([2, Proposition 3.1]). For all a ∈ No, |h(a)|+− ≤ ω|a|+−+1

Contrary to the previous statements, the two following lemmas are original up to
our knowledge. They contribute to a better understanding of the function g and the
comparison between the length of a surreal number and the one of its exponential.

Lemma 3.23. Let c be a surreal number. Assume g(a) < c for all a < ωc such
that 0 < a < ωc. Then g(ωc) = c+ if c does not have any longest prefix greater than
itself, otherwise, g(ωc) = c′′ where c′′ is the longest prefix of c such that c′′ > c.

Proof. By induction on c:
• For c = 0, g(ω0) = g(1) = 1 whose signs sequence is indeed the one of 0

followed by a plus.
• Assume the property for b < c. Assume g(a′) < c for all a′ < ωc such that
0 < a′ < ωc. Then,

g(ωc) = [c | g(a′′)]

where a′′ ranges over the elements such that a′′ < ωc and a′′ > ωc.
– First case: c has a longest prefix c0 such that c0 > c. Let a′′ such that

a′′ < ωc and a′′ > ωc. Let c′′ such that a′′ ≍ ωc′′ . We necessarily have
c′′ < c and c′′ > c. Therefore, c′′ < c0 and c′′ > c0. Thus

c < c0 < c′′ < g(a′′)
The simplicity property ensures that g(ωc) is a prefix of all surreal x
such that c < x < g(a′′) for all a′′ such that a′′ < ωc and a′′ > ωc.
Hence,

g(ωc) ⊑ c0 < c
For any a < ωc0 such that a < ωc0 , we also have a < ωc and a < ωc.
Thus g(a) < c < c0. We then can apply the induction hypothesis on
ωc0 and get one of the following cases

∗ If c0 as a longest prefix c1 such that c1 > c0, then g(ωc0) = c1.
In terms of signs sequences, we have some ordinals α and β such
that

c0 = (c1)(−)(+)α and c = (c0)(−)(+)β

Thus c0 = [c | c1]
But, by definition c < g(ωc) < g(ωc0) = c1. Thus, by the
simplicity property, c0 ⊑ g(ωc). Finally, g(ωc) = c0.

∗ If c0 has no longest prefix c1 such that c1 > c0, then g(ωc0) =
(c0)+. In terms of signs sequences, we have some ordinal α such
that

c = (c0)(−)(+)α

Thus c0 =
[
c
∣∣ (c0)+

]
But, by definition c < g(ωc) < g(ωc0) = (c0)+. Thus, by the
simplicity property, c0 ⊑ g(ωc). Finally, g(ωc) = c0.

– Second case: c does not have a longest prefix greater than c. Then,

g(ωc) =
[
c
∣∣∣ g(ωc′′)

]
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where c′′ ranges over the prefixes of c greater than c. Let d < c such
that d > c. Then there is d1 of minimal length such that d < d1 < c
and d1 > c. By minimality of d1, d is the longest prefix of d1 greater
than d1. As in the first case, we can apply the induction hypothesis on
d1 and get g(ωd1) = d. Thus all the prefixes c greater than c appear in
the elements g(ωc′′) for c′′ a prefix of c greater than c. The only other
possible value of g(ωc′′) is d+ for some d a prefix of c greater than c.
Hence it has no effect in the computation of g(ωc). Finally,

g(ωc) =
[
c
∣∣ c′′, c′′+

]
= [c | c′′]

where c′′ ranges over the prefixes of c greater than c. We finally con-
clude that g(ωc) = c+.

□

Lemma 3.24. For all a > 0, |a|+− ≤
∣∣ωg(a)

∣∣
+− ⊗ (ω + 1).

Proof. We proceed by induction on |a|+−.
• For a = 1, g(a) = 1 and we indeed have 1 ≤ ω2 + ω.
• Assume the property for all b < a. Let c such that ωc ≍ a. Then

g(a) = [c, g(a′) | g(a′′)]

We split into two cases:
– If there is some a0 < a such that a0 < a and g(a0) ≥ c then

g(a) = [g(a′) | g(a′′)]

Let S the signs sequence such that the signs sequence of a is the signs
sequence of a0 followed by S. By an easy induction on the length of
S, we can show that the signs sequence of g(a) is the signs sequence
of g(a0) followed S. Let α the length of S. Therefore using Theorem
3.9, ∣∣∣ωg(a)

∣∣∣
+−

≥
∣∣∣ωg(a0)

∣∣∣
+−

⊕ (ω ⊗ α)

and then,∣∣∣ωg(a)
∣∣∣
+−

⊗ (ω + 1) ≥
(∣∣∣ωg(a0)

∣∣∣
+−

⊕ (ω ⊗ α)

)
⊗ (ω + 1)

≥
(∣∣∣ωg(a0)

∣∣∣
+−

⊕ (ω ⊗ α)

)
⊗ ω ⊕

∣∣∣ωg(a0)
∣∣∣
+−

⊕ (ω ⊗ α)

≥
∣∣∣ωg(a0)

∣∣∣
+−

⊗ ω ⊕
∣∣∣ωg(a0)

∣∣∣
+−

⊕ (ω ⊗ α)

≥
∣∣∣ωg(a0)

∣∣∣
+−

⊗ (ω + 1)⊕ (ω ⊗ α)

and by induction hypothesis on a0,∣∣∣ωg(a)
∣∣∣
+−

⊗ (ω + 1) ≥ |a0|+− ⊕ (ω ⊗ α) ≥ |a0|+− ⊕ α = |a|+−

– Otherwise, for any a0 < a such that a0 < a, g(a0) < c. Therefore,

g(a) = [c | g(a′′)]

Also, since a > 0, we can write the signs sequence of a as the one of ωc

followed by some signs sequence S. If S contains a plus, then there is
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a prefix of a, a0 such that a0 < a and still a0 ≍ ωc and then g(a0) > c
what is not the case by assumption. Then, S is a sequence of minuses.
Let α be the length of S. Again, by an easy induction on α, the signs
sequence of g(a) is the one of g(ωc) followed by S. Hence,∣∣∣ωg(a)

∣∣∣
+−

≥
∣∣∣ωg(ωc)

∣∣∣
+−

⊕ (ω ⊗ α)

If S is not the empty signs sequence, as in the previous case but using
the induction hypothesis on ωc,∣∣∣ωg(a)

∣∣∣
+−

⊗ (ω + 1) ≥ |ωc|+− ⊕ α = |a|+−

Now if S is the empty sequence, a = ωc. Applying Lemma 3.23 to
c we get that either g(a) = c+ or g(a) is the last prefix of c greater
than c. If the first case occurs then a is a prefix of ωg(a) and then∣∣ωg(a)

∣∣
+− ≥ |a|+−. Now assume that the second case occurs. Then for

any b such that g(a) < b < c, b < c. If for all b′ < b such that b′ < b,
g(b′) < b, then Lemma 3.23 applies. Since b has a last prefix greater
than itself, g(a), g(ωb) = g(a) and we reach a contradiction since b < c
and therefore ωb < ωc = a. Then for all b such that g(a) < b < c, there
is some b′ < b, b′ < b such that g(ωb′) > b. Since the signs sequence of
b consists in the one of g(a) a minus and then a bunch of pluses, and
since g(ωb′) must also a a prefix of c, g(ωb′) ⊑ g(a) < b. Therefore
to ensure g(b′) > b, we must have g(ωb′) ≥ g(a). Since ωb′ is a prefix
of a lower than a, it is a contradiction. Therefore, there is no b such
that g(a) < b < c and b < c, and finally, the signs sequence of c is the
one g(a) followed by a minus. In particular, g(a) and c have the same
amount of pluses, say α. Then, using Theorem 3.9,

|a|+− =
∣∣∣ωg(a)

∣∣∣
+−

⊕ ωα+1

≤
∣∣∣ωg(a)

∣∣∣
+−

⊕
∣∣∣ωg(a)

∣∣∣
+−

⊗ ω =
∣∣∣ωg(a)

∣∣∣
+−

⊗ ω

≤
∣∣∣ωg(a)

∣∣∣
+−

⊗ (ω + 1)

We conclude using the induction principle.

□

Corollary 3.25. For all a > 0 and for all multiplicative ordinal greater than ω, if
|a|+− ≥ µ, then

∣∣ωg(a)
∣∣
+− ≥ µ.

Proof. Assume the that
∣∣ωg(a)

∣∣
+− < µ. Then using Lemma 3.24,

µ ≤
∣∣ωg(a)

∣∣
+− ⊗ (ω + 1)

Since µ is a multiplicative ordinal greater than ω, we have ω + 1 < µ. µ is a
multiplicative ordinal, hence

∣∣ωg(a)
∣∣
+− ⊗ (ω+1) < µ and we reach a contradiction.

□
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3.3. Paths. In the previous subsection, we saw that for all surreal numbers in
Conway normal form a =

∑
i<ν

riω
ai , we have

lnωa =
∑
i<ν

riω
h(ai)

and if a is purely infinite, expx = ω

∑
i<ν

riω
g(ai)

This means that h and g are in fact reciprocal that we can in fact write a in the
following way

a =
∑
i<ν

ri exp(xi)

where for i < ν xi = lnωai

Using this we can do the same thing for all the xis giving thus a tree structure. We
could have done this also to the ais giving another tree but the function x 7→ ωx

may be less convenient to work with since x < y =⇒ ωx ≺ ωy and thus there is
no hope for any “continuity” (for any reasonable notion of “continuity”).

Definition 3.26. Let x be a surreal number. A path P of x is sequence P : N →
No such that

• P (0) is a term of x
• For all i ∈ N, P (i+ 1) is an infinite term of ln |P (i)|

We denote P(x) the set of all paths of x.

Definition 3.27 (Log-atomic). A positive surreal number x ∈ No∗
+ is said log-

atomic iff for all n ∈ N, there is a surreal number an such that lnn x = ωan . We
denote L for the class of log-atomic numbers.

Remark. Actually, all the ans can be taken positive since if an ≤ 0 then lnn+1 x ≤ 0
which is impossible because of the existence of an+1.

Example. A typical example is ω. We can check that for all n ∈ N, lnn ω = ω
1

ωn .
Therefore

{expn ω, lnn ω | n ∈ N} ⊆ L

4. Fields closed under the exponential and logarithmic functions

This section is dedicated to the proofs of Theorems 1.3, 1.4 and 1.5 together with
Proposition 1.6.

4.1. An instability result. Recall that in [20, Proposition 4.7], we are provided
the following decomposition:

Noλ =
⋃

µ R
Noµ

λ

This decomposes Noλ into an increasing hierarchy of subfield. All of these are
well described in terms of Hahn series. However, none of these are closed under
exponential and logarithm which is stated in the following theorem:

Proposition 1.6. RNoµ

λ is never closed under exponential function for µ < λ a
multiplicative ordinal.
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Proof. If µ is a multiplicative ordinal but not an ε-number, µ = ωωα

for some
ordinal α < µ. Since g(ωα) ≥ ωα (Proposition 3.18), we have ωg(α) ≥ ωωα

= µ.
In particular, ωg(α) /∈ Noµ. Moreover, Proposition 3.14 ensures that exp(ωα) =

ωωg(α)

. Therefore, exp(ωα) /∈ RNoµ

λ .
Now, if µ is an ε-number. Take x =

∑
0<i<µ

ωω−i

. Then by Propositions 3.14 and

3.19 we know that

exp(x) = ω

∑
0<i<µ

ωg(ω−i)

= ω

∑
0<i<µ

ω−i

Since µ is an ε-number, for i < µ, ω−i ∈ Noµ but
∑

0<i<µ

ω−i /∈ Noµ (as a conse-

quence of Theorem 3.9, the series having length µ, the length of the surreal number
is at least µ). Therefore x ∈ RNoµ

λ and expx /∈ RNoµ

λ . □

4.2. Hierarchy of fields closed under exponential and logarithm. To get
fields in terms of Hahn series that are closed under exponential and logarithm, we
first characterise when a union of Hahn field gets the sought property. This is the
purpose of the following proposition:

Proposition 4.1. Let λ be an ε-number and (Γi)i∈I be a family of Abelian sub-

groups of No. Then R(Γi)i∈I

λ is closed under exp and ln if and only if⋃
i∈I

Γi =
⋃
i∈I

Rg((Γi)
∗
+)

λ

Proof.
���NC⇒ We assume that R(Γi)i∈I

λ is closed under both exponential and loga-
rithm. Then for any x =

∑
i<ν

riω
ai a purely infinite number, using Proposi-

tion 3.14, we have

expx = ω

∑
i<ν

riω
g(ai)

∈ R(Γi)i∈I

λ

and therefore
∑
i<ν

riω
g(ai) ∈

⋃
j∈I

Γj

This being true for any family (ai)i<ν of Γj , for any j ∈ I. Hence,⋃
i∈I

Rg((Γi)
∗
+)

λ ⊆
⋃
i∈I

Γi

Conversely, for any j ∈ I and any a ∈ Γj then we have lnωa ∈ R(Γi)i∈I

λ .
Writing a =

∑
i<ν

riω
ai , we get

∑
i<ν

riω
h(ai) ∈ R(Γi)i∈I

λ . To say it another way,

∃k ∈ I ∀i < ν h(ai) ∈ Γk

or ∃k ∈ I ∀i < ν ai ∈ g
(
(Γk)

∗
+

)
Then, there is some k ∈ I such that a ∈ Rg((Γk)

∗
+)

λ . Hence, for all j ∈ I,

Γj ⊆
⋃
i∈I

Rg((Γi)
∗
+)

λ . Finally,

⋃
i∈I

Rg((Γi)
∗
+)

λ ⊇
⋃
i∈I

Γi

Having both inclusions, we get
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⋃
i∈I

Rg((Γi)
∗
+)

λ =
⋃
i∈I

Γi���SC⇐ We assume that
⋃
i∈I

Rg((Γi)
∗
+)

λ =
⋃
i∈I

Γi. We split the proof into several steps

(i) First take x =
∑
i<ν

riω
ai ∈ R(Γi)i∈I

λ being appreciable, i.e. ai ≤ 0 for

all i < ν. By definition there is some j ∈ I such that x is an element
of RΓj

λ . Following Theorem 3.13,

supp expx ⊆ ⟨suppx⟩

where ⟨suppx⟩ is the monoid generated by suppx in Γj . In particular
supp expx ⊆ Γj . Then, Proposition 2.8 ensures that the order type of
supp expx is less than λ. Hence expx ∈ R(Γi)i∈I

λ .
(ii) Let x =

∑
i<ν

riω
ai ∈ R(Γi)i∈I

λ a purely infinite number. Let j ∈ I

such that x ∈ RΓj

λ that is that ai ∈ (Γj)
∗
+ for all i < ν. We have

expx = ω

∑
i<ν

riω
g(ai)

and∑
i<ν

riω
g(ai) ∈ R

g((Γj)
∗
+)

λ

By assumption, R
g((Γj)

∗
+)

λ ⊆
⋃
i∈I

Γi. Then expx ∈ R(Γi)i∈I

λ .

(iii) We now use both Items (i) and (ii). Let x ∈ R(Γi)i∈I

λ be arbitrary. Let
x∞ be its purely infinite part and xa its appreciable part. Then x =
x∞ + xa and expx = exp(x∞) exp(xa). Using (ii) and (i) respectively,
we have expx∞ ∈ R(Γi)i∈I

λ and expxa ∈ R(Γi)i∈I

λ . Then since R(Γi)i∈I

λ

is a field, expx ∈ R(Γi)i∈I

λ .
(iv) Similarly to Point (i), if x =

∑
i<ν

riω
ai ∈ R(Γi)i∈I

λ is infinitesimal, i.e.

ai < 0 for all i < ν, then

ln(1 + x) =
∞∑
k=1

xk

k
∈ R(Γi)i∈I

λ

(v) Let a ∈
⋃
i∈I

Γi. By assumption there is j ∈ I such that a ∈ R
g((Γj)

∗
+)

λ .

Hence, we can write a =
∑
i<ν

riω
g(ai) where ν < λ and ai ∈ (Γj)

∗
+ for

all i < ν. Then, lnωa =
∑
i<ν

riω
ai . Hence lnωa ∈ RΓj

λ ⊆ R(Γi)i∈I

λ .

(vi) Let x ∈
(
R(Γi)i∈I

λ

)∗

+
be arbitrary and write it as x = rωa(1 + ε)

where ε is infinitesimal, r is a positive real number and a a surreal
number. Then, lnx = lnωa + ln r + ln(1 + ε). Then since R(Γi)i∈I

λ

is a field, expx ∈ R(Γi)i∈I

λ . Using (v) and (iv) respectively, we have
lnωa ∈ R(Γi)i∈I

λ and ln(1+ ε) ∈ R(Γi)i∈I

λ . Then, since R(Γi)i∈I

λ is a field
containing R, lnx ∈ R(Γi)i∈I

λ .
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Item (iii) proves that R(Γi)i∈I

λ is closed under exponential and Item (vi)
that R(Γi)i∈I

λ is closed under logarithm. This is what was announced.
□

Corollary 4.2. Let λ be an ε-number and Γ be an Abelian subgroup of No. Then

RΓ
λ is closed under exp and ln if and only if Γ = Rg(Γ∗

+)
λ .

This result is quite similar to Theorem 1.3 but in the very particular case where⋃
G∈Γ↑λ

G = Γ. This applies for instance when Γ = {0}. In this case, we get RΓ
λ = R.

If λ is a regular cardinal we get another example considering RΓ
λ = Γ = Noλ which

is a result that is very similar to the result of Kuhlmann and Shelah in [15].
Using the previous proposition, we can now prove Theorem 1.3.

Theorem 1.3. Let Γ be an Abelian subgroup of No and λ be an ε-number, then
RΓ↑λ

λ is closed under exponential and logarithmic functions.

Proof. We write Γ↑λ = (Γβ)β<γλ
. Using Proposition 4.1, we just need to show⋃

β<γλ

Γβ =
⋃

β<γλ

R
g((Γβ)

∗
+)

λ

�
�	⊇ Let x ∈ R
g((Γβ)

∗
+)

λ . Let n < γλ minimal such that ν(x) < en. Then
x ∈ Γmax(n,β).�
�	⊆ Let x ∈ Γβ . Write x =

∑
i<ν

riω
ai . We also have x =

∑
i<ν

riω
g(h(ai)) and

h(ai) ∈ Γβ+1. Then x ∈ R
g((Γβ+1)

∗
+)

λ .
□

Now, we can use this statement to decompose Noλ into a hierarchy of fields, all
closed under the exponential and logarithmic functions. First, all the fields belong-
ing to the hierarchy must be included in Noλ.

Proposition 4.3. Let λ be an ε-number and µ < λ an additive (or multiplicative)
ordinal. If Γ ⊆ Noµ then RΓ↑λ

λ ⊆ Noλ

Proof. Write Γ↑λ = (Γβ)β<γλ
. What we have to prove is that for all i < γλ,

Γi ⊆ Noµi for some µi < λ. We will even prove that µi = ek⊕2⊗i works for some
fixed ordinal k. We prove it by induction on i.

• For i = 0, µ0 = ek with k the least ordinal such that µ ≤ ek works.
• Assume i = j + 1 and that the property is true for j. Therefore Γi is the

group generated by Γj , R
g((Γj)

∗
+)

ej and
{
h(ak)

∣∣∣∣ ∑
k<ν

rkω
ak ∈ Γj

}
. Thanks

to the induction hypothesis and Lemma 3.21, g
(
(Γj)

∗
+

)
⊆ Noµj , since

µj is an additive ordinal. Hence, thanks to Lemma 3.10, Rg((Γj)
∗
+)

ej ⊆
Noωµj⊗ω⊗ej

. Finally, from Lemmas 3.22 and 3.10, h(ak) ∈ Noωµj . Thus,
Γi ⊆ Noωµj⊗ω⊗ej

. Since ωµj⊗ω, ej < ek⊕2⊗i, and ek⊕2⊗i is multiplicative,
taking, µi = ek⊕2⊗i works.

• If i < γλ is a limit ordinal, for all j < i, λ > ek⊕2⊗i > ek⊕2⊗j . Then, by
the induction hypothesis on all j < i, Γi ⊆ Noek⊕2⊗i

.
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□

We are now ready to prove that we indeed have a hierarchy.

Theorem 1.4. Let λ be an ε-number. Noλ =
⋃

µ R
Noµ

↑λ

λ , where µ ranges over the
additive ordinals less than λ (equivalently, µ ranges over the multiplicative ordinals
less than λ).

Proof. Recall that [20, Proposition 4.7] states the following:

Noλ =
⋃

µ∈{µ<λ | µ additive ordinal}

RNoµ

λ

By definition of RNoµ
↑λ

λ , it must contain RNoµ

λ and then

Noλ ⊆
⋃

µ∈{µ<λ | µ additive ordinal}

RNoµ
↑λ

λ

On the other hand, applying Proposition 4.3 gives⋃
µ∈{µ<λ | µ additive ordinal}

RNoµ
↑λ

λ ⊆ Noλ

and this concludes the proof. □

We finally prove that the hierarchy is strict, making it interesting in itself as none
of the fields involved are equal to the global field. To prove that, we first claim
that the construction of Γ↑λ does not create new log-atomic numbers (up to some
iteration of exp or ln). After that, we will prove that we do introduce new log-atomic
numbers when going through the hierarchy.

Lemma 4.4. Write Γ↑λ = (Γβ)β<γλ
, and let

L =
{
expn x, lnn x

∣∣ x ∈ L, n ∈ N, ∃y ∈ RΓ
λ ∃P ∈ P(y) ∃k ∈ N P (k) = x

}
we have for all i < γλ,

L =
{
expn x, lnn x

∣∣∣ x ∈ L, n ∈ N, ∃y ∈ RΓi

λ ∃P ∈ P(y) ∃k ∈ N P (k) = x
}

Proof. We prove it by induction on i.
• For i = 0, Γ0 = Γ then there is noting to prove.
• Assume the property for some ordinal i < γλ. We prove it for i+ 1.�
�	⊆ Trivial since RΓi

λ ⊆ RΓi+1

λ .�
�	⊇ Let x ∈ L, y ∈ RΓi+1

λ , P ∈ P(y) and k ∈ N such that P (k) = x. Write
P (0) = rωa a term of x with a ∈ Γi+1. Then a can be written

a = u+ v +

k∑
j=1

σjh(wj)

with u ∈ Γi, v ∈ Rg((Γi)
∗
+)

ei , σj ∈ {−1, 1} and wj ∈ Γi. By definition of
a path, P (1) is a purely infinite term of

lnωa = lnωu + lnωv +

k∑
j=1

lnωσjh(wj) = lnωu + lnωv +

k∑
j=1

σj lnω
h(wj)
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Then, up to a real factor s, P (1) is a term of either lnωu or lnωv or
lnωh(wj) for some j.

∗ Case 1: sP (1) is a purely infinite term of lnωu. Then the func-
tion

Q(m) =


ωu if m = 0

sP (1) if m = 1

P (m) if m > 1

is a path of ωu ∈ RΓi

λ . Then, if m ≥ max(2, n), Q(m) = P (m) =
lnm−n(x) then for all n ∈ N,

expn x, lnn x ∈
{
expn x, lnn x

∣∣∣∣ x ∈ L, n ∈ N,
∃y ∈ RΓi+1

λ ∃P ∈ P(y) ∃k ∈ N P (k) = x

}
∗ Case 2: sP (1) is a purely infinite term of lnωv. Write v =∑

i<ν′
siω

g(bi) where bi ∈ Γk. Again, the function

Q(m) =

{
sP (1) if m = 0

P (m+ 1) if m > 0

is a path of lnωv =
∑
i<ν′

siω
bi ∈ RΓi

λ . Then,if m ≥ max(1, n− 1),

Q(m) = lnm−n+1 x ∈ L and we are done.
∗ Case 3: sP (1) is a purely infinite term of lnωh(wj). From the

definition of wj , there is s′ ∈ R∗ such that s′ωwj is a term of
some element of y ∈ Γn. Then s′ωh(wi) is a purely infinite term
of lnωy. Then the function

Q(m) =


ωy if m = 0

s′ωh(wi) if m = 1

sP (1) if m = 2

P (m− 1) if m > 2

is a path of ωy ∈ RΓi

λ . Then, if m ≥ max(3, n + 1), Q(m) =
lnm−n−1 x ∈ L and we are done.

• Let i < γλ be a limit ordinal. Assume the property for j < i. We have
that Γi =

⋃
j<i

Γj . Again we just need to prove one inclusion, the other one

being trivial. Let x ∈ L and y ∈ RΓi

λ , P ∈ P(y) and n ∈ N minimal such
that P (n) = x. Write P (0) = rωa with a ∈ Γi. Then there is j < i such
that a ∈ Γj . In particular P is a path of rωa ∈ RΓj

λ . We conclude using
the induction hypothesis on j.

□

Corollary 4.5. Let Γ be an Abelian additive subgroup of No and

L =
{
expn x, lnn x

∣∣ x ∈ L, n ∈ N, ∃y ∈ RΓ
λ ∃P ∈ P(y) ∃k ∈ N P (k) = x

}
Then,

L =

{
expn x, lnn x

∣∣∣∣ x ∈ L, n ∈ N,
∃y ∈ RΓ↑λ

λ ∃P ∈ P(y) ∃k ∈ N P (k) = x

}
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Proof. Just apply the definition of RΓ↑λ

λ and Lemma 4.4. □

We now prove the Theorem 1.5.

Theorem 1.5. For all ε-number λ, the hierarchy in Theorem 1.4 is strict:

RNoµ
↑λ

λ ⊊ RNoµ′ ↑λ

λ

for all multiplicative ordinals µ and µ′ such that ω < µ < µ′ < λ.

Proof. Let λ be an epsilon number. Let µ < µ′ < λ be multiplicative ordinals.
Let x = ωω−µ

. Clearly, x ∈ RNoµ′

λ ⊆ RNoµ′ ↑λ

λ . So we will prove that x /∈ RNoµ
↑λ

λ .
Note x is a log-atomic number, indeed using Corollary 3.20 lnn x = ωω−µ−n

. Then
applying Corollary 4.5 to both Noµ and Noµ′ we just need to show that

x /∈
{
expn x, lnn x

∣∣∣ x ∈ L, n ∈ N, ∃y ∈ RNoµ

λ ∃P ∈ P(y) ∃k ∈ N P (k) = x
}

Assume the converse. Then there is some path P such that P (0) ∈ RωNoµ and
there is some natural numbers n, k ∈ N such that P (k) = lnn x. We prove by
induction on i that for all i ∈ J 0 ; k K, |ai|+− ≥ µ where P (i) = riω

ai ,

• For i = k, P (i) = ωω−µ−n

and using Theorem 3.9,∣∣ω−µ−n
∣∣
+− = ω ⊗ (µ+ n) ≥ µ

• Assume the property for some i ∈ J 1 ; k K. By definition of a path, writing
P (i − 1) = ri−1ω

ai−1 and ai−1 =
∑
j<ν

sjω
bj , there is some j0 < ν such

that bj0 = g(ai) and sj0 = ri. Using induction hypothesis and Corollary
3.25,

∣∣ωbj0
∣∣
+− ≥ µ and therefore

∣∣sj0ωbj0
∣∣
+− ≥ µ. Now using Lemma 3.11,

|ai−1|+− ≥
∣∣sj0ωbj0

∣∣
+− ≥ µ.

The induction principle can then be used to conclude that |a0|+− ≥ µ. But since
P (0) ∈ RωNoµ , |a0|+− < µ. We reach a contradiction. Consequently, x /∈ RNoµ

λ .
□
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