CSE206 Homework : Language of a non-deterministic automaton

quentin.guilmant@lix.polytechnique.fr

March 2020

Abstract

The purpose of this homework is to give another method to compute the language of nondeterministic automaton using linear algebra methods. We first prove a useful theorem that ensures existence and uniqueness of the solution, then we explicit it. You can answer either in English or in French.

We fix a finite alphabet Σ for this homework.

1 Reminders and notations

Notation. We let $\boldsymbol{R e g}$ be the set of the regular languages over Σ. If $A, B \in \boldsymbol{R e g}, A B$ is the concatenation of languages and $A+B$ is the union of regular languages.

The notation is in accordance with the fact that these operations behave as the usual operations over numbers.

Remark 1.1. \varnothing is the neutral element of + and $\{\varepsilon\}$ is the neutral for the concatenation.
Definition 1.2. Let $m, n \in \mathbb{N}$, we denote $\mathcal{M}_{m, n}$ the matrix with m lines and n columns such that the coefficients are regular languages. We also denote $\mathcal{M}_{n}=\mathcal{M}_{n, n}$ the set of square matrices.

Definition 1.3. Addition and multiplication extend as usual to matrices. If $A, B \in \mathcal{M}_{m, n}$, with $A=\left(a_{i, j}\right)_{(i, j) \in \llbracket 1 ; m \rrbracket \times \llbracket 1 ; n \rrbracket}$ and $B=\left(b_{i, j}\right)_{(i, j) \in \llbracket 1 ; m \rrbracket \times \llbracket 1 ; n \rrbracket}$, then

$$
A+B=\left(a_{i, j}+b_{i, j}\right)_{(i, j) \in \llbracket 1 ; m \rrbracket \times \llbracket 1 ; n \rrbracket}
$$

In a similar way, if $A \in \mathcal{M}_{m, n}$ with $A=\left(a_{i, j}\right)_{(i, j) \in \llbracket 1 ; m \rrbracket \times \llbracket 1 ; n \rrbracket}$, and $B \in \mathcal{M}_{n, p}$ with $B=$ $\left(b_{i, j}\right)_{(i, j) \in \llbracket 1 ; n \rrbracket \times \llbracket 1 ; p \rrbracket}$, then
where

$$
\begin{gathered}
A B=\left(c_{i, j}\right)_{(i, j) \in \llbracket 1 ; m \rrbracket \times \llbracket 1 ; p \rrbracket} \\
c_{i, j}=\sum_{k=1}^{n} a_{i, k} b_{k, j}
\end{gathered}
$$

Definition 1.4. If $A, B \in \mathcal{M}_{m, n}$, with $A=\left(a_{i, j}\right)_{(i, j) \in \llbracket 1 ; m \rrbracket \times \llbracket 1 ; n \rrbracket}$ and $B=\left(b_{i, j}\right)_{(i, j) \in \llbracket 1 ; m \rrbracket \times \llbracket 1 ; n \rrbracket}$, then we write

$$
A \subseteq B \quad \text { iff } \quad \forall i, j \quad a_{i, j} \subseteq b_{i, j}
$$

Question 1. What is the identity matrix $I_{n} \in \mathcal{M}_{n}$ such that if $A \in \mathcal{M}_{n}$, $I_{n} A=A I_{n}=A$? What is the zero-matrix $0_{n} \in \mathcal{M}_{n}$ such that if $A \in \mathcal{M}_{n}$, $A+O_{n}=O_{n}+A=A$?
Definition 1.5. For $A \in \mathcal{M}_{n}(\boldsymbol{R e g})$, we use the convention $A^{0}=I_{n}$.

2 A useful lemma

In this section we prove the following theorem :
Theorem 2.1. Let $A \in \mathcal{M}_{n}$ and $B \in \mathcal{M}_{n, 1}$ with $A=\left(a_{i, j}\right)_{i, j \in \llbracket 1 ; n \rrbracket}$ and $B=\left(b_{i}\right)_{i \in \llbracket 1 ; n \rrbracket}^{T}$. Let $X=A X+B$ be a matricial linear equation over regular languages. Then the smallest (for inclusion) solution to this equation is

$$
A^{*} B=\sum_{k \in \mathbb{N}} A^{k} B=\bigcup_{k \in \mathbb{N}} A^{k} B
$$

This solution is a column-vector of regular languages. Finally if for all $i, j \in \llbracket 1 ; n \rrbracket, \varepsilon \notin a_{i, j}$ then it is the unique solution.
In general we use this theorem in the 1-dimensional case :
Corollary 2.2. If A and B are regular languages then $A^{*} B$ is the smallest solution to $X=A X+B$ and is $\varepsilon \notin A$ then it is the unique condition.

2.1 A minimum solution

We now fix $A \in \mathcal{M}_{n}$ and $B \in \mathcal{M}_{n, 1}$ with $A=\left(a_{i, j}\right)_{i, j \in \llbracket 1 ; n \rrbracket}$ and $B=\left(b_{i}\right)_{i \in \llbracket 1 ; n \rrbracket}^{T}$. The following question is optional. It is just to help you to think about the problem.
Question 2. Show that $A^{*} B$ is a solution to the equation.
Question 3. Let X be a solution of $X=A X+B$. Show that $A^{*} B \subseteq X$.

2.2 The smallest solution is regular

We have shown that $A^{*} B$ is the smallest solution to the equation, but it is for the moment just a set. Indeed, $A^{*} B$ is defined as an infinite union of regular languages : none of the coordinate of A^{*} is an $a_{i, j}^{*}$ so it must not be trivial to be sure that the languages are indeed regular. We now show that it is a vector of regular languages. For $k \in \mathbb{N}$ we let

$$
A^{k} B=\left(\begin{array}{c}
L_{1}^{(k)} \\
\vdots \\
L_{n}^{(k)}
\end{array}\right)
$$

Question 4. What is the language $L_{i}^{(0)}$ for $i \in \llbracket 1 ; n \rrbracket$?
Question 5. For any $k \in \mathbb{N}$ and $i \in \llbracket 1 ; n \rrbracket$, give a relation between the languages $L_{i}^{(k+1)}$, the $L_{j}^{(k)}$ for $k \in \llbracket 1 ; n \rrbracket$ and the $a_{i, j}$ for $k \in \llbracket 1 ; n \rrbracket$.

We consider the following automaton \mathcal{A}_{i}.

$$
\begin{aligned}
a_{i, j} & =\left(\Sigma, Q_{i, j}, q_{0, i, j},\left\{f_{i, j}\right\}, \Delta_{i, j}\right) \\
b_{i} & =\left(\Sigma, Q_{i}, q_{0, i},\left\{f_{i}\right\}, \Delta_{i}\right)
\end{aligned}
$$

(we identify $a_{i, j}$ with its automaton) (we identify b_{i} with its automaton)

$$
\mathcal{A}_{i}=\left(\Sigma, \bigcup_{i, j}\left(Q_{i, j} \cup Q_{i}\right),\left\{q_{0, i, j} \mid j \in \llbracket 1 ; n \rrbracket\right\} \cup\left\{q_{0, i}\right\},\left\{f_{0, i, j} \mid j \in \llbracket 1 ; n \rrbracket\right\} \cup\left\{f_{0, i}, \Delta\right)\right.
$$

with

$$
\begin{aligned}
\Delta= & \left(\bigcup_{i, j}\left(\Delta_{i, j} \cup \Delta_{i}\right)\right) \cup\left\{\left(f_{0, i, j}, \varepsilon, q_{0, j}\right) \mid i, j \in \llbracket 1 ; n \rrbracket\right\} \\
& \cup\left\{\left(f_{0, j, k}, \varepsilon, q_{0, k, l}\right) \mid j, k, l \in \llbracket 1 ; n \rrbracket\right\}
\end{aligned}
$$

(We assume, up to renaming,that the $Q_{i, j} \mathrm{~s}$ and $Q_{i} \mathrm{~s}$ are disjoint.)
Question 6. Let $w \in \llbracket \mathcal{A}_{i} \rrbracket$. Show that $w \in L_{i}:=\bigcup_{k \in \mathbb{N}} L_{i}^{(k)}$.

Question 7. Let $w \in \bigcup_{k \in \mathbb{N}} L_{i}^{(k)}$. Show that $w \in \llbracket \mathcal{A}_{i} \rrbracket$.
Question 8. Conclude that the entries of $A^{*} B$ are regular languages.

2.3 Uniqueness of the solution

In this subsection we consider that none of the languages $a_{i, j}$ contains ε. Let $X=\left(\begin{array}{c}X_{1} \\ \vdots \\ X_{n}\end{array}\right)$ be a solution to $X=A X+B$. We define $X^{(k)}=A^{k} X=\left(\begin{array}{c}X_{1}^{(k)} \\ \vdots \\ X_{n}^{(k)}\end{array}\right)$.
Question 9. Show that if $w \in X_{i}^{(k)}$ then $|w| \geq k$.
Question 10. Show that $X \subseteq A^{*} B$ and conclude that $A^{*} B$ is the unique solution to the equation.

3 Regular expression of a non-deterministic automaton in polynomial time

Let $\mathcal{A}=(\Sigma, Q, I, F, \Delta)$ be a finte state automaton with no ε-transition. For $q \in Q$ we let $\mathcal{A}_{q}=$ $(\Sigma, Q,\{q\}, F, \Delta)$ the automaton \mathcal{A} such that the only initial state is q.
Question 11. Give a matricial equation of the form $X=A X+B$ that must satisfy the vector $X=\left(\llbracket \mathcal{A}_{q} \rrbracket\right)_{q \in Q}$. Explain why this solution is the unique solution. (Hint : B is the vector $\left(b_{q}\right)_{q \in Q}$ with $b_{q}=\varnothing$ if $q \notin F$ and $b_{q}=\{\varepsilon\}$ if $b_{q} \in F$.)

Question 12. Give an algorithm to compute a solution to this matricial equation. (Hint : proceed as you were solving it for numbers (Gauss algorithm) and use corollary 2.2)
Question 13. Apply your algorithm to the automaton we saw in tutorial :

