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Chapter 1

Introduction

1.1 General introduction

Surreal numbers The initial motivation of this thesis was to study continuous models of computations in the context
of surreal numbers. These numbers are quite special as they encapsulate almost everything we would expect from the
vague notion of “numbers”. To be more precise, we are interested in ordered field. In this context, a number is just an
element of such a field.

The intuition of what is a number may begin with the idea of natural numbers and their completion under addition.
This forms the ring of integers, Z. However, this is a ring, not a field: it lacks a division. This is solved by the field of
rational numbers, Q. However, this field is still a bit odd. It is possible to build a sequence of rationals that converges

but not to an element of Q. For instance (uy,),, oy defined by induction by

1
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is a sequence of rational numbers which converges to v/2—1, an irrational number. If we close the field Q under taking all
these limits, we end up with the Cauchy-completion of Q, the field of real numbers, R. However, R does not encapsulate
the idea that there is something greater than all natural numbers. In fact there is a single (up to isomorphism) ordered
field with no such a number: R. Thus, the non-existence of such a large number is much more a particular case than
a general one. As an example, Hardy fields may contain many of these elements. The consideration of large numbers
leads to the construction of ordinal numbers. These are not included in R, but that still come with a notion of order,
which extend the order over integers. Therefore, we can look at the field R(w) where w is the least infinite ordinal
number. This field is ordered and again we can go deeper and deeper, taking bigger and bigger ordinals and taking
Cauchy-completions. Eventually, we may end up with a class of all possible numbers, surreal numbers.

The (class-)field of surreal numbers is a universal ordered (class-)field, in which we can embedded any ordered field.
They also form a real closed (class-)field and thus are looking good, at first sight, to do some analysis on it. Note that we
are not speaking about non-standard analysis since in the context of surreal numbers, there is no transfer principle in
action. However, as a consequence of quantifier elimination for the theory of real closed fields, any formula about them
is still satisfied in the surreal numbers (see for instance [46]). A study of analysis in the context of surreal numbers has
been conducted by Alling in 1987 in his book “Foundation of analysis over surreal numbers fields” [1]]. Other authors
have also contributed such as Fornasiero [22]] who tired to get integration for surreal valued functions or Rubinstein-
Salzedo and Swaminathan [40] who provided surreal extensions to some usual real functions such as arctan. They also
investigated the notion of limit, a notion that Lipparini and Mez6 also developed [35]].

Surreal numbers are a quite recent notion. They were first considered by Conway in the context of Games Theory. He
published his classical book “On numbers and games” [18] in 1976 and introduced them with an inductive procedure
and the use of equivalence classes. Note that this reference book is not the first occurrence of surreal numbers but is
the first book Conway dedicated to them. Two years before, in 1974, Knuth published a novel [30] that use Conway’s
idea to introduce surreal numbers. However, the main referenc about the formal construction of surreal numbers with
statements and proofs is due to Gonshor [26]]. Gonshor was introduced to surreal numbers by Kruskal who decovered
how to extend the exponential function over the surreal numbers. Later, surreal number have been related to transseries
which are ordinal-long formal series. His book makes a remarkable work of systematic construction and proofs of basics
results that are very useful when dealing with such numbers.

Transseries may be seen as some asymptotic behaviors ([49]), as well as surreal numbers. This link was first stated in
van der Hoven'’s book “Transseries and real diffential algebra” ([29]) and since then has been studied deeper ([5} 8} [7]]).
The reason why surreal numbers may seem suitable for such a study is that any ordered field can be embedded into
it and that they still have a notion of simplicity and a somewhat explicit structure. They are also more flexible than

1At least according to the author of this thesis.
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transseries. Indeed, transseries need new atoms to speak about non-elementary functions ([0} [I1]]) whereas surreal
numbers can have access to elements that are greater than any tower of exponentials the very same way other numbers
are built.

The analog thing Our ambition about the relation between surreal numbers and the continuous models of compu-
tation is the fact that surreal numbers may encapsulate the notion of “asymptotics”. More precisely, we aim to relate
surreal numbers, or at least some interesting subfields of them, to the behaviors of some “dynamical systems”, which are
basically evolution rules that define a trajectory in a space of possible configurations. Models of computation are often
known as discrete systems (Turing machines, cellular automata, arithmetic circuits) but they may also be continuous.
The continuous model has been theorized by Shanon in 1941 [43] when he introduced the General Analog Computer
(GPAC) and they turned out to be deeply related to (polynomial) differential equations, which are a different kind of
dynamical systems. It turns out that it is possible to simulate the discrete world into the continuous one ([15]]).

GPAC:s are built from four buildings blocks which are given by Figure [1.1| below. This block takes an input that is a
continuous function of time and outputs the result of the corresponding operation as a continuous function of the time.
We have

« a constant generator which gives a real number k € R.
- an addition unit, which outputs the sum of its inputs.
« a multiplication unit, which outputs the products of its inputs.

« an integration units, which, given an input u(t) and the time ¢, outputs the primitive of u.

u_
k =k + Futv

/I}_

u — u —
X b= uw [ Juadt

v — t —

Figure 1.1: Building blocks of a GPAC

All these blocks can be realized by electric circuits or mechanical systems. Actually, the first analog computer were
mechanical. Nowadays, it is possible to get their own electronic analog computelﬂ Each of this block must be connected
by wires. However, wires must be connected to exactly one output node. Nonetheless, feedback connectors are allowed.
To be more precise, we are not allowed to enforce equality by directly connecting two outputs together. It is quite
obvious that each node of a GPAC will satisfy a polynomial ordinary differential equatio Therefore, we will use this
alternative definition for the characterization of the functions. Using GPACs, the function we can get are divided into
two main categories:

Definition 1.1.1 (GPAC-generable function). Let I be an interval of R containing 0. Let d € N*. A function
f = (fi,---,fa) : I — R?%is GPAC-generable if there are an integer N > d, polynomials P; € R[X,..., Xx]
and a vector yo € RY such that the solution y = (y1,...,yn) : I — R¥ to the system

{ y(0) = yo
yi(t) = Pi(yi(t),...,yn(t)) tel i€[1;N]
is such that Vie[l;d] fi=uwy

Definition 1.1.2 (GPAC-computable function). Let n,d € N* and I C R"™. A function f = (fi,..., fq) : I — R?
is GPAC-computable if there are an integer N > d, polynomials P; € R[X;,...,Xn] and @; € R[X4,...X,] for
i € [1; N] such that for all z € I, the solution y = (y1,...,yn) : I — R to the following polynomial initial value
problem:

{ yi(0) = Qi(z) i€[1; N]J
yi(t) = Pi(pa(t), ... ,un(t)) tel ie[l; N]
is such that Jto>0 Fa>0 VE>ty Vie[l;d] lyi(t) — fi(z)| < exp (—at)

2See for instance https://analogparadigm.com/ which sells such computing units.
3In fact, if we allow outputs to be connected to each other, we may loose this property.
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In other words, a generable function f is such that there is a system that can output f(¢) at time ¢ and a computable
function is such that there is a system that converges to f(z) as the time grows. We can take a look at the following

examples.

Example 1.1.3. The functions sin and cos are generable. They are indeed generated by the following system:

{yl(O) =0 { Y1 (t) = ya(t)
y2(0) =1 y2(t) = —uy1(t)

The associated GPAC is:

L — | — 17 L_si_n_t—'

—1 _¥ X | SILT

i

Figure 1.2: A GPAC for cos and sin.

Example 1.1.4. Euler’s gamma function, I', defined by
+0o0o
Vo >0 I'(z) = / t" Lexp(—t) dt
0

is GPAC-computable. To see that we first observe that

+o00o 1
I(z) = / t*~Lexp(—t) dt + / t*~Lexp(—t) dt
1 0

+00 +o0o 1 1
0 1t t

+0o0o +0o0 1 1
= 1+ ¢)= ! —1—t)dt S — —— ) dt
[, weotestisna [ e (<)

Now, considering the following system:

~

= ya(t)ys(t) + ys(t)yo(t)

<

1)
Wit = 0 v = 0 ey
hit) = w0y (D) = —wr(0us(us(0) ") = 1
Vi) = w0yt v = s w(t) mo) = et
B = —uslt) violt) = ws(us() wo(0) = 0
ve(t) = ya(t)ys(t) ’

it can be shown that

t

In partucular, y; (¢) converges to I'(x). Hence, a GPAC that computes I' can be drown as follows:

t o1 1 1

yi(t) = ye(t) + y10(t) :/0 (14 u)*"'exp(—1 —u) d“+/0 WGXP (_1+u) du
ya(t) = x—1 yr(t) = z+1

1 1
ys(t) = T4t ys(t) = A+ 0ot
n) = (epe o) = e (1)
ys(t) = exp(=1-1) y(t) = /O W P < 1 Jlr u) du
ys(t) = /0 (1+u)* Lexp(—1 —u) du
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Figure 1.3: A GPAC for I'.

Further works by Bournez, Compagnolo, Costa, Graga, Hainry or Pouly [44] [15] [38] [16] [14] have made explicit the link
between GPAC, solution to polynomial ordinary differential equations and Turing machines on both computability and
complexity points of view.

Surreal numbers to describe asymptotic evolution When considering a dynamical system, it is quite confortable
to know how it behaves after a long time, in the permanent regime. If we want to tackle this topic with surreal numbers,
the notion of differentiation must be investigated so that they can be seen as dynamical system by themselves. This
work has been achieved by Berarducci and Mantova ([[12]]) in 2018. They provided a way to define derivations and
anti-derivations over surreal numbers. They also find out a “simplest” derivative, but it turned out that this one is not
compatible with any notion of composition over surreal numbers, which is very hard to define in a satisfying way.
However, for our purpose, it is not as big as an issue. In fact, “composition” of dynamical systems beyond arithmetic
operations is also not well defined. Namely, there is no satisfying general wayﬁ to get a differential equation for the
composition of functions that satisfy (polynomial) ordinary differential equations.

However, surreal number (and transseries), despite being bad at composition, can still handle complicated things such
as a primitive of x +— exp (xQ) Such a function is known to have no elementary writing. Nevertheless, if we see x
as infinitely large number we can find an expression that would play the role of such a function. Indeed, if we derive
formally the expression

exp (2?) £ (2k)! 1
peTs (%)
2z k=0 4kk' l’2k
. 5 : . koo (2k)!
we end up with exp(z?). The problem is that the power series ) ]
k=0 %" H-
we cannot use this expression to evaluate the primitive of exp(z?). However, with such an expression, we can handle

properly this primitive. Again, we insist on the fact that this expression is not the expression of a function but is still
a useful writing to describe an asymptotic behavior of the primitive of exp(x2). In fact, in can be shown that if f is a

2* has radius of convergence 0, therefore,

4 At least to the knowledge of the author of this thesis
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primitive of exp(x?), then for all natural number N,
N

X 2 2k)! 1 xp(z?
1o = S G 0. (SR

k=0

This mean that the writing (*) must be seen has the asymptotic development of a primitive of exp(z2) rather than an
actual primitive. And this is why it can be considered as the primitive of exp(z?) in the context of surreal numbers (or
transseries): surreal numbers have much more to do with asymptotic behavior.

Note also that such a primitive is not just an thought experiment: it can be generated by a GPAC. Here is one which
performs this computation:

L o) —
2 —_ | x ] x ] 1 J//i J —E/Otexp(uz)dui
’— |

Figure 1.4: A GPAC to generate = — exp(z?) and its primitive.

1.2 Brief and informal state of the art about surreal numbers

The most celebrated way to construct surreal numbers is due to Gonshor. He provided a notation as signs sequences of
ordinal length to describe them. The main idea is that we are given a line with a starting point and then walk on it. If
we read a +, we go one “step” to the right and if we see a —, we go to the left. The steps have to be smaller and smaller
like if we were performing a dichotomic search. We can illustrate the finite case with the following figure:

()
(=) ) (=+) start () (++)
(—++) (++—+)
+ +
+ + +
(++-)

Figure 1.5: The signs sequences on the surreal line.

The formal definition is given by Definition 3.1.3]

With such a notion, it is quite easy to define a concept of simplicity over surreal number. A surreal number 2 is simpler
than y if z is a prefix of y. For instance, (+ — —)(+4)* is simpler than (+ — —)(+)“(—)%. This notion of simplicity
defines a well partial order over surreal number, which is quite intuitive since it is closely related to their lengths, which
are ordinal numbers.

We can also define a natural order on surreal number, which is just defined by the lexicographic order (up to adding
a blank symbol O such that — < [0 < 4 to compare sequences that have different lengths). That considered, despite
being simpler than (+ — —)(+)“(—)%, (+ — —)(+) is larger than it.

If we are given two sets of surreal numbers L and R such that each element of L is lower than any element of R, we can
wonder what is the simplest surreal number which is both greater than any element of L and smaller than any element
of R. We write it [L | R]. It turns out that such an element always exists. Moreover, fixing a surreal number z, if L
is the set of the prefixes of x smaller than x, and R is the set of prefixes of x greater than x, then z = [L | R]. We
call this writing the canonical representation of x. Thanks to this observation, we can write any surreal number z as
x =[L| R] for some sets L and R.

That being defined, we can make use of it to define operations over surreal numbers. A function f (possibly with
several variables) over the surreal numbers is said to be genetic if, f(z1,...,2,) = [L | R] where L and R are defined
(in the sense that they are definable in the sense of Set Theory) from the sets given by the canonical representations of
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Z1,...,Z, and (possibly) f(y1, ..., yn) where y; is either z; or one of its prefixes and at least one of the y;s is a prefix
of the corresponding x;. For instance, we can define addition in a genetic way. If & = [L1 | Ry] and y = [Ls | Ra], we
have x + y = [L | R] with

IIGLl

y' € Lo y" € Ry

1
L:{x’—l—y,x—i—y’ N ERl}

} and R:{x"—i—y,x—&—y”

It is possible to show that this indeed defines an addition over the surreal numbers with the neutral element, 0, being
the empty sequence. It is also possible to define all the field operations in a similar way, even if it is more complicated
(see Section [3.2). With such properties we can easily see that there is an embedding of Z into the surreal numbers (the
finite sequences consisting in solely pluses or solely minuses). Therefore, thanks to the division, it is also possible to
embed Q into the surreal numbers. One step further, we also embed R. Indeed, a non rational real number r can be seen
as[{qe Q| qg<r} | {qeQ|q>r}]

Gonshor [26] provided a genetic definition for an exponential function over the surreal numbers (see Section [3.6). This
function behaves exactly as expected over real numbers and then is an extension of the usual exponential function over
R. This function comes together with its compositional inverse, which is of course an extension of In to all positive
surreal numbers (see Section [3.6).

Finally, surreal numbers can be seen as transseries (see Sections [4.2|and and thus can be understood as dynamics
by themselves. Speaking about dynamics, surreal numbers admit a formal derivation (see Section [3.9) which has been
developed by Berarducci and Mantova ([12] [13]]). Unlike what we mentioned earlier, the definitions of a derivation
and the corresponding anti-derivation are not genetic. However, there is still a notion of simplicity since they showed
that among all the possible derivations, one is “simpler” than the other. However, the simplest derivation is still not
completely satisfying. Indeed, they showed that no suitable notion of composition can make the chain rule ((f o g)' =
g’ x [’ o g)valid in the context of surreal numbers.

Note that the derivation over surreal numbers is a derivation of surreal numbers themselves and not of functions over
surreal number. A lot of attempts have been done to get genetic definition of derivation and anti-derivation for functions
defined on surreal numbers (see for instance [22} 40} [1]. However every definition of such an integration fails on very
simple and expected properties. For instance, we may not have the uniqueness of a primitive up to some constant factor

b
or we may not be able to satisfy / f = F(b) — F(a) when F is a primitive of f (especially because of the previous

observation).

1.3 Overview of the contributions and organization of the thesis

In this monograph, we recall the theory the field No of all surreal numbers and contribute to establish a working context
to the study of surreal numbers in smaller fields than No that still have a lot of stability properties. These fields are the
foundation of our long term ambition to use surreal numbers and an extension of them to study dynamics of GPACS,
hence to study the dynamics of algorithms.

This thesis is organized as follows:

« Chapter [2]is a background chapter that provides basic knowledge about well orders and order types. Nothing is
unknown from the scientific community in this chapter but we still provide proofs of some theorems that are hard
to find in the literature (this includes Propositions(2.3.6} [2.4.2| and [2.4.3).

« Chapter [3]is the longest part of this monograph. It presents synthetic view of what has been done with the surreal
numbers. This chapter is mostly a survey about surreal number but still contains original contributions such as
the proofs of some upper bound linked to the derivatives of surreal numbers.

« Chapter [4| makes the link between surreal number and transseries as the later structure is quite well studied in
the literature and asymptotic studies.

« Chapter [5| may be the most important and original part of this thesis. In this chapter we show how to build
fields of surreal numbers that are stable under almost all the operations we need to study differential equations
(exponential, logarithm, derivative, anti-derivative). These constructions may give access to some hierarchy of
surreal fields. We think that this hierarchy is a promising approach to study surreal numbers for computation
compare to an approach that would consider the whole proper class of surreal numbers.

« Chapterl6]introduces some topological considerations about surreal numbers. The whole chapter is also an original
contribution. We study some continuity aspects to be able to study the derivation over surreal number with
this fact in mind so that we may be able to reduce to solution to some polynomial differential equations to the
Intermediate Value Theorem. We expect this consideration to lead to a better understanding of the behavior of
the derivative over surreal numbers.
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« Chapter [7]is our suggestion to handle oscillatory behaviors with surreal numbers. Extending them, we build the
field of oscillating numbers that take into account the functions cos and sin that are known to have no satisfying
extensions to surreal numbers. Thus, this number should be able to handle much more asymptotic behavior than
surreal numbers alone and we expect them to encapsulate behaviors of continuous models of computations.

« Chapter [8|recaps what we presented in this thesis an gives some conjectures and perspective for further works.
Our main contributions can be divided into three parts which are the points of Chapters 5] [6|and [7] respectively.

« Our first contribution is to exhibit suitable fields to work on. For the sake of computability, we expect this field
to be small enough to handle only computable ordinals. We also want them to be close under operations such as
exp, In, derivation and anti-derivation. This is a major change compared to previous work since previous attempts
have considered at least uncountable ordinalsﬂ (see for instance [23] 24]). As we said, we do not just provide a
construction that relies on non-computable but countable ordinals: we provide even smaller fields containing only
computable ordinals. In particular, we show that ordinals up to €, already form fields stable enough. Note that
this ordinal is huge. However, it is stupidly small compared to the first uncountable ordinal, w; or even compared
to the first non-computable ordinal, w?K which is still countable.

For this study, the main theorems developed in this thesis are unarguably the following:

> Theorem [5.1.6} which provides an example of field of surreal numbers which is both quite simple and still
stable under exponential and logarithm. It is a consequence of Proposition[5.1.7] which establish a necessary
and sufficient condition for a subfield of surreal numbers built from formal series to be stable under exp
and In. This is the first step to get a field closed under even more operations.

> Theoremsand These theorems decompose fields of surreal numbers that have a lengt}ﬁbounded
by some ordinal \ as a strict hierarchy for fields of the form given by Theorem|[5.1.6]

> Theorem which extends the stability to the derivative and the anti-derivative over surreal numbers.
« We provide some notion of topology over the surreal numbers to handle the gaps which are almost everywhere in

the surreal line. We develop and characterize notions of gap-connectedness, gap-compactness and gap-continuity
for the functions over the surreals.

In this domain, the main result we prove are:

> Proposition [6.2.10|characterizes gap-compact sets as closed, bounded and gap-connected sets.

> Proposition|6.2.16|gives a characterization of gap-compact sets that is analog to Borel’s definition of compact
sets.

> Theorem is the Intermediate Value Theorem in the context of surreal numbers. It requires a stronger
notion of continuity than the expected one.

« The whole chapter [7]is about providing a construction of a new field of numbers, oscillating numbers. These
numbers solve the problem of defining cos w by considering it as a brand new number, together with many others.
However, the construction remains quite simple.

SUncountable ordinals are in particular not computable.
5The length of the signs sequence
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Chapter 2

Well-ordered sets

Our work strongly relies on ordered sets and, more precisely, well-ordered sets. These concepts were originally intro-
duced by Cantor ([17], with english translation [25]). Well-ordered sets are very natural when we think about orderings.
Namely, given an element which is not maximal, it is always possible to say which one is the next element according
to the ordering and, which is the most important, it is impossible to build an infinite decreasing sequence. This fact
enables us to use induction over well ordered sets, which is very convenient. Finally, we stress the fact that it is possible
to rank well ordered sets themselves with what is called their order types. The order type of a well ordered set A is just
a specific well ordered set, an ordinal, which is order-isomorphic to A. They are much more easier to deal with as we
have a clear construction for them.

In this state of the art chapter, we introduce theses concepts using already known works and also provide some proofs
of classical results (namely Propositions|[2.3.6] [2.4.2]and [2.4.3) but whose proofg|are hard to find in the literature.

« In Section[2.1] we quickly introduce some key notions about ordered sets.

« In Section [2.2| we define the ordinals from a Set Theoretic point of view. We also link them with arbitrary well
ordered set.

« In Section[2.3] we dive deeper into the variety of operations ordinal numbers can support and take a look at special
ordinals that have “stability” properties.

« Section[2.4] contains some bounds on the ordinals associated to specific constructions of well ordered sets.

2.1 Notions about orders

Let us got through some useful definition about ordered sets.

Definition 2.1.1 (Well ordered set). Let (A4, <) be a (partially) ordered set. A is well-ordered (or well-founded) if every
non-empty subset of A has minimal element.

In other words, A is well (partially) ordered if an only if it has no infinite decreasing sequence. Such sets are very useful
for well-founded induction. The well founded induction works as follows: If we want to prove a property P(z) over a
well partially ordered set (S, <),

1. We prove P(x) for all minimal z € S, i.e forall z suchthaty <z — y ==.

2. Assuming P(y) for all y such that y < x, we prove P(z)

If these two properties are satisfied, then we proved that P(x) holds for all © € S. Indeed, if it was not true, the set
{z € S| =P(x)} (notice that this set is well defined in the sens of Set Theory) would not be empty and then have a
minimal element by definition of a well (partially) ordered set. Call it zy. Then either x is minimal in .S and therefore
P(z) holds by point 1, or, by minimality of zy we can deduce P(x() by point 2. In both cases we reach a contradiction.
Hence, the set was in fact empty.

Definition 2.1.2. Let (5, <) a a (partially) ordered set and A, B C S. A and B are cofinal if for any b € B, there is
a € A such that b < a and for any a € A there is b € B such that ¢ < b. Similarly, A and B are coinitial if for any
b € B thereis a € A such that a < b and for any a € A thereis b € B such that b < A.

Example 2.1.3. For example, {0} is coinitial with N. Also, Z is both coinitial and cofinal with R.

1 At least proofs that does not reduce to say that it is a “well-known result”.

13
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2.2 Ordinal numbers

We first introduce ordinal numbers. They play a great role in the construction of surreal numbers we will see in Sec-
tion Moreover, ordinal numbers are a class of canonical well-ordered sets, namely, every totally well-ordered set is
isomorphic (as an ordered set) to some ordinal.

Definition 2.2.1 (Ordinal numbers). Let « be a set. « is an ordinal number if and only if the relation € is transitive
over « and it defines a total strict well-order over «. In the context of ordinal numbers, we will possibly use < instead
of €. We denote Ord for the class of all ordinal numbers.

Example 2.2.2. The empty set is an ordinal, as well as {@}. The later one is the unique ordinal with a single element.
Indeed if {z} was also an ordinal with © # &, there would be some y € x. Therefore, by transitivity, y € {«}. Then,
y = x hence x € x which is not possible since € is a total strict order.

Remark 2.2.3. The fact that € is a total strict order ensures the uniqueness of ordinal numbers. That way, we do not
need the Axiom of Regularity to conclude to the unique definition of ordinal numbers. This uniqueness is stated in

Proposition Item

From the definition we immediately derive that

Proposition 2.2.4. (i) If X is a set of ordinals such that € is transitive over X and such that foralla,f € X, o € 8
ora= [ orB € q, then, X is itself an ordinal.

(ii) Let « be an ordinal number. Let x € cand 8 = {y € a| y € x}. Then (3 is an ordinal number. Moreover, if 8 # «,
then 3 € .

(iii) If o is an ordinal, then oo U {«} is itself an ordinal number. It is called the successor of o .
Proposition 2.2.5. (i) Let o, 3 be isomorphic ordinals as ordered sets. Then o« = [3.

(ii) Let o, 3 be ordinal numbers. Then either o« € B or 3 € a oraw = f3.

Corollary 2.2.6. Let A be a set of ordinals. Then |J « is an ordinal. It is denoted sup A.

acA
If A has a greatest element, then it is sup A. If not, sup A is the least ordinal containing A. The supremum is the way
to build more and more ordinals. In fact, ordinal numbers can be divided into two categories:

Definition 2.2.7. 1. If an ordinal has the form a U {a}, it is called a successor ordinal (the successor of ) .

2. An ordinal which is not successor is called a limit ordinal. We denote w for the least limit ordinal and Lim for
the class of the limit ordinals.

Remark 2.2.8. If a € Lim then we have o« = sup «. Indeed, if 8 € a, then since o € Lim the successor of 5 must also
be in «v. Therefore, § € sup « as an element of 3 U {5} € a. Conversely, if 5 € sup a, transitivity gives 8 € a.

In Proposition [2.2.5] we saw that ordinals are well defined and have a straightforward definition. Therefore, they may
pretend to be standard representative for well-ordered set. More precisely, we now state that, in a sense, they are the
only well total orders that exist; every well ordered set is order-isomorphic to some ordinal.

Theorem 2.2.9. Let (X, <) be a well total order. There is a unique ordinal which is order-isomorphic to (X, <).
Definition 2.2.10 (Order type). We call the ordinal which isomorphic to a well ordered set, its order type.

Definition 2.2.11 (Cardinal). A cardinal & is an ordinal such that for all & € &, there is no bijection between « and
k. A cardinal is regular if for any morphism ¢ between e € « and &, ¢ is bounded above, i.e there is some 5 € k such
that for all v € a, p(y) € B.

Example 2.2.12. w is regular, as well as w; the first uncountable ordinal.

2.3 Operations over ordinal numbers, Cantor normal form

When counting or ranking things, we naturally end up with a well ordered set. We have a first element, then a second,
and so on. In every day life, we of course use finite sets but it is still possible to extend the principle to infinity. Assume
that we have ranked an infinite set of things with ranks from 0 to infinity, if we want to add a new element to our
collection, it will be ranked after any natural number, it will be ranked w. With that in mind we now can imagine that
we want to rank the union of two ranked collections, one after the other. Here comes an idea of addition of well ordered
set and therefore an addition of ordinal number.
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2.3.1 Usual operation over ordinal numbers

Addition of well ordered sets can be seen a concatenation. Namely, if we have a element and then, after them, 3
elements, then we end up with o @ 3 elements.

Definition 2.3.1 (Ordinal addition). (i) We define 0 to be @.
(ii) Denote a ® 0 = au.
(iii) Let v be an ordinal. Define a ® 1 = a U {a}.

(iv) We define natural number as the successorsof 0: n =081 @ --- S 1.
[

n times
(v) Let a be an ordinal and 8 = v & 1 be a successor ordinal then we definea® = (a®v) ¢ 1
(vi) Let @ be an ordinal and 8 € Lim, then weset a ® S =sup{a @y | v € S}.

Remark 2.3.2. Notice that this definition uses transfinite induction.

To make clearer the intuition about concatenation, we state the following lemma:

Lemma 2.3.3 (Concatenation, folklore). Let A and B be two well-ordered set with order type o and 3 respectively. Then,
the concatenation of A and B, ({0} x A) U ({1} x B), is well-ordered by the lexicographic order with order type a ® .

The proof is straightforward by induction on f3.
Definition 2.3.4 (Ordinal multiplication). By transfinite induction, we define
(@) a®0=0
(i) a@(yol) =(a0y)da
(iii) For § e Lim,a® B =sup{a @~y | v € 8}

Remark 2.3.5. Even if @ and ® behave well over natural numbers, in the sense that they match the usual operations
over natural numbers, even if both & and ® are associative operators, none of them is commutative. That is why we
do not use the classical operators + and x that we will keep available to define commutative operations over ordinal
numbers.

Ordinal multiplication is in fact the natural order type for the lexicographic order over a Cartesian product.

Proposition 2.3.6 (Cartesian product, folklore). Let A and B be two well-ordered sets with order type o and [3 respectively.
Then, the Cartesian product A x B is well-ordered by the lexicographic order with order type 5 ® .

Proof. We do it by induction on a.
« If @« = 0 then A x B = & which is well-ordered with order type 0 = 8 ® 0.

- Assume the property for all well-ordered set A’ with order type «. Let A of order-type a @ 1, a its largest element
and A’ = A\ {a}. The order-type of A’ is &. Then A’ ® B is well-ordered with order-type 8 ® «. Since for any
b € B, (a,b) is larger than any element of A’ X B, the order type of A X Bisindeed S®@ a @ =8® (P 1).

+ Let « a limit ordinal and A of order type cv. Let A, the initial segment of A of length v with v < «. Then
AxB= U A, xB
<«

is an increasing union of initial segments. By induction hypothesis, A, x B has order type 8 ® 7. Therefore
A X B has order type sup, ., @7 =8 ® a.

O
Definition 2.3.7 (Ordinal exponentiation). By transfinite induction, we define
(i) a® =1
(i) "' =a"®a
(iii) For 8 € Lim, o’ =sup{a” | v € B}.
Example 2.3.8. We have for instance, 2% = w, w* = sup {w" | n € w} and (w & 42)*P57 = W57 @ (YWS56 @ 42,

Remark 2.3.9. For the sake of simplicity, we introduce priorities for ordinal operations to be the same as usual addition,
multiplication and exponentiation: ordinal multiplication has priority over ordinal addition and ordinal exponentiation
has priority over both of them. For instance

a®fRy=a®(fy) and a®fTRI=ad((7)®9)
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2.3.2 Cantor normal form and natural operations

We are now ready to give a major theorem about ordinal numbers. The following theorem is a generalization of Cantor’s
normal form theorem ([[17]).

Theorem 2.3.10 (Cantor, [17]). Let 8 > 2 and « be ordinal numbers. Then « can be written in a unique way as

Bky @ B2ks ® - @ ok
with0 < k; < S andey > ez > --- > e, > 0 being ordinal numbers.
We call such an expression the normal form in base 3 of the ordinal . The special case 5 = w is called the Cantor’s
normal form.

An ordinal o in Cantor’s normal form looks like a “polynomial” in w excepts that the exponents may be any ordinal
numbers and not only natural numbers. Such an expression may suggest a definition of an addition and a multiplication
which behaves nicely with Cantor’s normal form. They are called natural operations, or Hessenberg operations ([28]]).
The idea is to perform formal addition and multiplication of “polynomials”.

m

n

Definition 2.3.11 (Natural addition). Let a = Y w®k; and 3 = 5 w1, be two ordinal numbers in Cantor’s normal

i=1 j=1
form. Let p the number of element in the finite set {a;}; U {f;},. Let 71 > --- > =, a decreasing enumeration of this
set. Up to set k; = 0 or [; = 0, we assume, without loss of generality n = m = pand forall¢ < pa; = 3; = ;. We
then define

P
a+ = Xj(x)%(kiz + lz)
i=1

where the sum is an ordinal sum.

Remark 2.3.12. 1t is the same definition as the addition of polynomial except that the exponents may not be natural
numbers.

Remark 2.3.13. Notice that the ordinal sum behind the symbol 3 corresponds to the Hessenberg sum for the special
case of “monomials” with decreasing exponents.

Remark 2.3.14. This addition behaves much more like the sum we would think at first thought. In particular, it defines
a commutative monoid over ordinals numbers

Example 2.3.15. We give an example to compare both of the additions, + and &:
W2+ wT+8) + (W +7) =w? +w?2+ w7+ 15
whereas W2+ wT+8) B (W3 +7)=w?+7
and (W3+T7) @ (W24 w7 +8) =wd +w?2+w7+38
Definition 2.3.16 (Natural multiplication). Let o = > w®k; and 8 = 3 wPil; be two ordinal in Cantor’s normal
i=1 j=1

form. We define similarly:

a X ﬁ = ZwaHrB] kllj

,J

2.3.3 Special classes of ordinal number

We already introduced the class Lim of limit ordinal numbers. This class is the class of ordinal numbers that are stable
under the successor operation. Namely,

a € Lim < VY € a BU{B} €
in other words a € Lim < VY[ < « b+1<a

We have now seen other operations. We can also define classes of ordinal numbers that are close under addition, of
multiplication or even exponentiation.

Lemma 2.3.17 (Additive ordinals, folklore). Let v be an ordinal number. We have 8 + v < « (resp. f & v < «) for all
B, < « if and only if there is some ordinal number o/ such that & = w® .
Proof. @ Assume that for all 5,7 < a we have 4+ v < a (resp. S Dy < ). Let @« = > w*n; in Cantor’s normal
k=1
form. Let  =w* and v = (n1 — Dw* + > w*.If § # athen 8,7 < abutstill 5+ = « (resp. 5Dy < )
k=1

which is a contradiction. Therefore 8 = o = w®?.
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’ n p
@ Assume now that « = w® for some o’. Let 8 = Y wPin; < aandy = > w¥m; < « in Cantor’s normal
k=1 k=1
form. Then 31,71 < o’. Then the first term of the Cantor’s normal form of 3 + v (resp. 3 @ ) is either w”1nq,
or wmy, or w? (ny +mq). Inall cases, B+ v < a (resp. BB v < ).
[

Lemma 2.3.18 (Multiplicative ordinals, folklore). Let « be an ordinal number. We have 5y < « (resp. S @y < «) for all

8,7 < « if and only if there is some ordinal number o such that o = w*" .

Proof. @ Assume that for all 5,7 < « we have Sy < « (resp. § ® v < «). First, if there are 5,7 < « such that
B+~ > al(resp. B @7y > ), then either 85 > a (resp. & 8 > «) or vy > « (resp. ¥ ® ¥ > «), depending on

which of 3 or 7 is the greatest. Then, from Lemma [2.3.17, a = w® for some o', Let o/ = > w%n; in Cantor’s
k=1

o (n —1)w“1+iwa’i
normal form. Let f = w*"' and vy = w ' =1 IfwP # athen w? WY < abut still By = « (resp.
1

B8 ® v < a) which is a contradiction. Therefore w? = a = w*"".

o n P
@ Assume now that & = w*” for some o/. Let 8 = > wfin; < aandy = > w”m; < a in Cantor’s normal
k=1 k=1

form. Then f1,71 < w® . Then the first term of the Cantor’s normal form of By (resp. B ® ) is wrtnm;y
(resp. wP1®71). Hence, 7 < a (resp. B @ 7 < a).
O

Lemma 2.3.19 (s-numbers, folklore). Let o > w be an ordinal number. We have 37 < « for all B, < « if and only if
a = w.

Proof. @ Assume that for all 8,y < « we have 57 < «. First, let 3,7 < « and denote § = max(8,~,2). Then
§% > B ® ~y. By assumption we get 3 ® v < a for all 3,7 < a. Applying Lemma there is some o such

o ’ ’ . « . . .
that « = w® . Assume w® # . Then w® < «. Since w < a we have w* < « by assumption, which is an
immediate contradiction. Therefore, o = w®.

@ Assume that o = w®. Let 8,7 < a. Let w?'n be the first term of the Cantor’s normal form of 3, then the first

term of the Cantor’s normal form of 37 is WP ®Ym where m is either 1 or n. Since B' < 3 we have also that
' < . Notice that we can also write @ = w*" and then Lemmaensures that 5/ ® v < «. Finally, we get
that 87 < a.

O

We give names to ordinal numbers satisfying the previous lemmas.
Definition 2.3.20. Let o be a ordinal number. « is

« an additive ordinal if there is some o’ such that o = wo‘/,

’

- a multiplicative ordinal if there is some o’ such that o = w*
« an e-number if o = W,

Additive ordinals are also called additively undecomposable ordinal numbers. Indeed Lemma [2.3.17| says that such an
ordinal cannot be written as the sum of two smaller ordinals. The same happen for multiplicative ordinals that are in
fact multiplicatively undecomposable ordinal numbers.

2.4 Order types of composed well-ordered sets

When we have some well-ordered sets, say A and B, that we may assume to be contained in an other well-ordered
set, C, we may wonder what is the order type of some composed sets such as AU B or A+ B (if C supports an addition
operation) or (A) the monoid generated by A (if C' is a monoid). This section is about bounding the order types of these
composed sets. The following results are known since years in the folklore but we provide proofs anyway, as we did
not find a reference for them.
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2.4.1 Union of well-ordered sets

Lemma 2.4.1 (Folklore). LetT" be a totally ordered set, A C T" be a well-ordered subset with order type cv. Let g € I'. Then
the set AU {g} is well ordered with order type at most o + 1.

Proof. We prove it by induction on «.
« If & = 0 then AU {g} has only one element, and then has order type 1 = a: + 1.

o If @ = v 4 1 is a successor ordinal. Let u the largest element in A. If u < g then A U {g} has indeed order type
at most « + 1. If not, then, by induction hypothesis, (A \ {u}) U {g} has order type at most ¥ + 1 = «. Then
AU{g} = ((A\{u})U{g}) U {u} has order type at most o + 1.

o If v is a limit ordinal. If g is larger than any element of A, then A U {¢} has order type o + 1. If not, let ay € A
such that ag > g. For a € A such that a > ag set

B,={g}u{d € A|d <a}

Since « is limit, we have Au{gt= U Ba

a>ag
and each of the element in the union is an initial segment of A U {g}. We also denote «,, the order type of the
set {a’ € A| d’ < a}. In particular, o, < «. Using induction hypothesis, B, has order type at most «, + 1.
Then, since we have an increasing union of initial segments, the order type of A U {g} is at most
sup{ags+1]| a>ao}=sup{ad’+1|d <a}=«a

since « is a limit ordinal.
We conclude thanks to the induction principle. O

Proposition 2.4.2 (Union of well-ordered sets, folklore). Let I' be a totally ordered set A, B C I" be non-empty well-
ordered subsets with respective order types o and [3. Then the subset A U B is well ordered with order type at most o + f3.

Proof. AU B is well-ordered. Indeed, if we have an infinite decreasing sequence of A U B, then we can extract either
an infinite one for either A or B which is not possible. It remains to show the bound on its order type. We do it by
induction over « and S3.

« Ifa = 8 =1, then AU B has at most two elements. Then, its order type is at most 2 = o + 3.

« Ifaor Bisasuccessor ordinal. Since both cases are symmetric, we assume without loss of generality that 8 = y+1.
Let u be the largest element of B and C' = B\ {u}. Then, by induction hypothesis, AU C has order type at most
« + . Using Lemma [2.4.1] we get that the order type of AU Bisatmosta + v+ 1= a + f.

« If @ and 3 are limit ordinal. A or B must be cofinal with A U B. For instance say it is A. For a € A, let
A, ={d €A| d <a} and B,={beB|b<a}

We have AUB= |J A, UB,
acA

Since A is cofinal with A U B, it is an increasing union of initial segments. Let «, be the order type of A, and 3,
the one of B,. We have a, < a and 3, < . By induction hypothesis, A, U B, has order type at most o, + S,-
Then A U B has order type at most

sup{a,+ 8, | a€ A} <a+p

We conclude the proof using the induction principle. O

2.4.2 Sum of well-ordered subsets of a monoid

Assume now that we have well-ordered subsets of an ordered Abelian additive monoid. A very natural subset to build is
the set of elements of the group that are a sum of one element of the first set and one element of the second one. In the
worst case, we build something that looks like a Cartesian product. Then we can expect the natural product of ordinal
numbers to play a role in the sum of well-ordered subsets, and it actually does.

Proposition 2.4.3 (Folklore). Let I' be an ordered Abelian additive monoid and A, B C T" be non-empty well-ordered
subsets with respective order types v and 3. Then the subset A+ B ={a+b| a€ A be B} is well ordered with order
type at most of3.

Proof. We prove it by induction over « and .
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« If « = 8 =1, then A + B has only one element, then has order type 1 = af.

« If & or 3 is not an additive ordinal. Let say 5 = y 4+ § with v, 4 < 3. We choose 7, d such that v+ § = v @ J. Let
B the initial segment of length «y of B. Let B, = B\ Bj. By has order type §. Then, by induction hypothesis,
A + By has order type at most vy and A 4 By has order type at most ad. Then, using Proposition[2.4.2] A + B
has order type at most ay + ad = af.

« If both o and 3 are additive ordinals. Assume A + B has order type more than 5. Let a + b € A + B such that
C:={c€ A+ B| ¢ < a+ b} has order type of3. Let

Ay={d € A|d <a}land By={V € B| V¥V <b}
and oy and [y their respective order types. We have

C C(Ap+ B)U(A+ By)

Using induction hypothesis and Proposition C has order type at most a5+ a3p. Since oy < aand By < 3,
we have a9 < aff and affy < af. a and 3 being additive ordinal, a3 is itself an additive ordinal and then C'
has order type less than a3, what is a contradiction. Then A + B has order type at most a3.

We conclude thanks to the induction principle. O

Warning 2.4.4. In the previous proof, we can conclude that ap8 < a3 because we are using the natural product. If we
were using the ® operator, this inequality would not necessarily hold.

2.4.3 Monoid generated by a well-ordered subset of a monoid

We can go further and wonder what would happen if we iterate the previous construction. Namely, if we look at a
monoid generated by some well ordered subset of some Abelian group.

Proposition 2.4.5 ([53] Weiermann, Corollary 1]). Let I' be an ordered Abelian group and S C TI'y be a well-ordered
subset with order type «.. Then, (S), the monoid generated by S inT" is itself well-ordered with order type at most w* where,

if the Cantor normal form of a is
n

o= win
i=1
n ’
then a=>wn,
i=1
= B+1 iff3 isanec-number
B otherwise
In particular, (S) has order type at most w*® (commutative multiplication).

and

2.4.4 Order type of the set of finite sequences

Finally, we also have an explicit bound when we look at the finite sequences over a well-ordered set, which also form a
well-ordered set for the corresponding lexicographic order (up to add a blank symbol as new minimum to compare the
words).

Theorem 2.4.6 ([20, de Jongh, Parikh, Theorem 3.11] and [42] Schmidt, Theorem 2.9]). Let (X, <) be a well ordered set
with order type o.. Let X* be the set of finite sequences over X. Let [3 the order type of X*. We have

a—

we if a is finite
B<Qw ™ ife <a < e+ w for some e-number e

@ .
w¥ otherwise
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Chapter 3

Surreal numbers

In 1976, Conway published his classical book [[18] “On numbers and Games”. Motivated by Games Theory, he introduced
new numbers and came up with a construction of “all numbers great and small”. This relies, among other things, on Sets
Theory. Since his construction contains “all” the numbers (assuming that only numbers that support an ordering are
considered), it contains in particular real numbers but also ordinal numbers. More precisely, real numbers and ordinal
numbers can be identified as subsets of the class of surreal numbers, which are all the numbers that we can put an order
onto. In this chapter we take a look at Conway’s construction and Gonshor’s formalism [26] of surreal numbers.

This chapter mostly presents what has already be done in the literature about surreal numbers. However, we still provide
some new bounds about what is called the nested truncation rank in Lemma 3.8.24] Corollary 3.8.25| Propositions[3.9.29]
and These bounds will be used in Chapter 5}

« Section [3.1]introduces two different ways to build surreal numbers.
« Section[3.2]is dedicated to the operations we can use over surreal numbers.

« Section [3.3] gives a construction of a normal form for surreal numbers and relates this normal form to the initial
construction of surreal numbers.

« Section [3.4]relates additive ordinals, multiplicative ordinals and e-numbers to some identifiable structures inside
the class of surreal numbers.

« Section 3.5 introduces the concept of substructure and parametrization of some specific class of surreal numbers
« Section 3.6 builds an exponential and a logarithm over surreal numbers.

« Section [3.7| defines a particular class of surreal number to be used as elementary bricks, or leafs of a tree repre-
sentation of surreal numbers provided by the next section.

« Section 3.8 provides a tree representation and studies its properties.

« Sections 3.9 and use the tree representation to define a derivation of surreal number and a way to get an
anti-derivative of a given surreal number.

3.1 Construction of surreal numbers

3.1.1 Conway’s construction

Definition 3.1.1 (Conway’s construction of surreal numbers and their order [18]]). We define surreal numbers by trans-
finite induction as follows:

- Start with “nothing”, that is to say consider the pair [& | @]. Call it 0 and set 0 <q 0. Set Ny = {0}.

« Assume we have built a set of numbers A, for some ordinal number « and a preorder on it, <,. Let L, R C N,
such that
YeelL VreR l<yr

Then we say that the pair [L | R] is a new number and define
Nog1 =N U{[L| R | L,R CN,}

21
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We now define the preorder. For x = [L| R] € Ny11 andy = [L' | R'] € N,41 we define by well-founded
induction on x and y that:

<,y ifI,y GN(X
< R ANL <y otherwise

x SaJrl Y U? {

Notice that at any point in the induction, sets L, R, L', R’ may be empty. Therefore, the corresponding inequalities
become trivial. Another point is that the preorder is well defined since no element of L, R, L’ or R’ is in Ny 11\ N,
In other words, there is a pair of ordinal indices that is lexicographically decreasing.

« Assume we have built Nz for 5 < v and « a limit ordinal. We define

No=JNs
B<a
and x<a¥ <— dI<a x<gy
Notice that by induction on «, each relation <, is indeed a preorder. Then we can define

N= U N

a€0rd

Ve, y e N r<y<=JacOrd =<,y

and < is indeed a preorder over V. The class of surreal numbers in Conway’s point of view is
No=N/=
where = is the equivalence relation on A/ associated to the preorder <. In that way, < defines a total order over No.

The previous definition is quite complicated and was not exactly stated like that in [18]. However, the original definition
lacks formality and we just give here a more detailed definition.

Definition 3.1.2. The birthday of a surreal number z € No is the minimum ordinal « such that there are sets L, R C N
suchthat [L | R] € Nyandz = [L| R].

The only number whose birthday is 0 is called the surreal number 0. There are only two numbers whose birthday is 1.
Call them —1 and 1. All these names are consistent with the definitions of operations we will give in the following (see
Section 3.2). We have

—1=[2|{0})] and 1=[{0}] 2]

On day 2, we have four numbers which are

1 1
—2=[g]{0,-1}  —-5=[{-1}31{0}] S=Ho}[{1}] 2=[{0,1}]9]
Notice that we could have considered the pair [{—1} | {1}] but looking at the definition of =, we can see that

-1 {1}]=[2]2]=0

If we keep this process going on, we will define all the dyadic numbers. Actually the dyadic numbers can be identified
with exactly all surreal numbers whose birthday is finite. Using this encoding of the dyadic numbers into the surreal
numbers, we can now embed all the other real numbers. Indeed, consider x € R not dyadic. Then z can be identified
with

H%<x‘ m € 7, nEN} ’ {%>x‘ m € 7, nENH
We can also see that every natural number can be embeddedasn = [[0; n — 1] | &]. Following the same idea, ordinal
numbers can be seen inductively asa = [{f € Ord | 8 < a} | ).

Notation. We may forget the brackets { } when considering [ L | R]. Forinstance, [0,1 | 2] will stand for [{0,1} | {2}].
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3.1.2 Gonshor’s construction

In 1986, Gonshor published his classical book [26] and gave an alternative definition and presentation of the theory of
surreal numbers. He mostly considers sequences of pluses and minuses that terminates at some ordinal step. Actually,
this idea was first introduced by Conway ([18]]) himself. Then main difference with Gonshor’s point of view is that
Conway needed to introduce at least the addition of surreal numbers to define the signs sequences. Gonshor took the
opposite direction: he started with signs sequences. This idea is helpful since we then can define surreal numbers
thanks to some already known concepts (sequences, lexicographic order, ...) and is not just a pure new formal definition.
Following Gonshor, we then give the following definition:

Definition 3.1.3 (Gonshor’s construction of surreal numbers). The class No = {+, —}<% is the class of all binary
sequences of some ordinal length av € Ord where Ord denotes the class of all ordinal numbers. In other words, No
corresponds to functions of the form x : « — {+, —} where the ordinal number « is the length of the surreal number z.
The length « of the surreal number x is denoted by |z[, _ (the idea of this notation is to “count” the number of pluses
and minuses).

Similarly, we denote the (ordinal) number of pluses in the signs sequence of x by [z|_ .

For all surreal number z, denote z; the surreal number whose signs sequence is the one of « followed by a plus. More
precisely, we have

[y +1 = {+ -}
Ty N ~ (o) ifa<|z|, _
+ ifa=|z|, _

The order over surreal number is then given by the lexicographic order over the signs sequences. More precisely we
say that — < 0 < + where [J is a blank symbol and to compare x and y, we append blank symbols to the end of the
shortest one and then compare lexicographically.

Note that No is not a set but a proper class, and all the relations and functions we shall define on No are going to be
class-relations and class-functions, usually constructed by transfinite induction. We will also see that we can give No a
structure of class-field.

In the following, surreal numbers will be handled without necessarily use an explicit formulation of the underlying sign
sequence. For instance, we will use the number 10 to speak about the surreal number :

_J 10=1[0;9] {+ -}
10'{ J =

Therefore, when we want to handle the pluses and minuses, we will speak about the signs sequence of a surreal
number.

Notation. We will use some notations to describe the signs sequences of surreal numbers. We will use the following
grammar :

S—el(S)Y|SS|A
A— B+ |B-
B—e|A

where « is an ordinal number and the rules can be applied an ordinal number of times. The expression gives the values
of the signs sequence in order as expected. For instance, (+ — +—) is the surreal number z of length 4 such that
2(0) = 2(2) = + and z(1) = z(3) = —. Similarly, (+—)“(+) is the surreal number y of length w + 1 such that for all
k € N, y(2k) = + and y(2k + 1) = — and such that y(w) = —.

Another useful concept is the notion of prefixes. We take a notation inspired by the Python programming language. If
x is a surreal number of length o and 3 and  are two ordinal numbers such that 5 < v < «, we denote =[S : 7] the
surreal number defined as follows:

V6 € Ord BBo<y = z[B:7](0) =z(Bd )
and if 8B 0 > v, z[B : 7](9) is undefined. We will also let for 8,7 < «,
z[B:] =z[B : q] and  z[:9] =2z[0:7]

Finally, we introduce the set No, = { z € No | lz],_ < a} for all ordinal «. This is the set of surreal number whose
lengths are bounded above by a.

Definition 3.1.4 (Prefix). Let x and y be surreal numbers. y is said to be a prefix of z iff there is some ordinal o < ||, _
such that y = x[: a]. When this is true, we write y C x. If x T y but & # y, we write  C y. If so, we say that x is
simpler than y.
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We now can define the operation [- | -] over surreal numbers. It relies on a fundamental existence theorem which
follows:

Theorem 3.1.5 ([26] Gonshor, Theorem 2.1]). Let L, R be two sets of surreal numbers such that L < R. There is a unique
shortest surreal number x such that L < x < R. Moreover, z is a prefix of anyy such that L <y < R.

Definition 3.1.6 ([26] Gonshor]). We define [L | R] to be the unique shortest surreal number x such that L < 2 < R.
If v = [L | R] we say that the writing [ L | R] is a representation of . Fixing a representation z = [L | R], we say
that the element of L are left elements of = and that the elements of R are right elements of x.

This definition actually corresponds to the definition of [- | -] given in section Indeed, we can prove by induction
that N,/ = and {:c € No | 2], _ < a} are order-isomorphic and that all the isomorphisms are successive extensions
of each other. In particular [- | -] is the same in both points of view and therefore :

Lemma 3.1.7 ([26] Gonshor, Theorem 2.5]). Letx = [L | R] any = [S | T] be two surreal numbers. Then
r<y <= xz<TAL<d
Proof of the isomorphism. - For a = 0, Ny = {[@ | @]} which exactly corresponds to { z € No | lz|,_ <0}
« Assume that ,,/ = and {J: € No | || 4 < a} are order-isomorphic with some isomorphism ®. Recall that
Nay1 =N, U{[L| R] | L,RC N,}

By induction hypothesis, for L, R C N, there are L', R’ C {1: € No ‘ \x|+7 < a} such that ®(L/ =) = L'
and ®(R/ =) = R'. We then define

() = O(z) ifrxeN,/ =
" \[L'| R] ifxz ¢ N,/ = isthe equivalence class of [L | R] with L, R C N,

By definition, this function is surjective. Let now z,y € Nyy1/ = such that # < y. Since the definition of
the order is the same in M, 1/ = and in No, we then get ®'(z) < ®'(y). Finally, ®’ is an order isomorphism.
Moreover, ® is a restriction of ®’.

« Assume that N3/ = and {z € No | |z|,_ < B} are order-isomorphic with some isomorphism ® for all 3 <
« and that if v < 3, ®, is a restriction of ®,. We define an order isomorphism ® between N1/ = and
{z €No | z|,_ < a+1} by ®(x) = Pg(,)(x) where 5(x) is the least ordinal such that € N/ =. The
induction hypothesis ensures that ® is itself an order isomorphism and that all the ®gs are restrictions of ®.

O

3.1.3 Properties of [- | -]

We give here some natural properties of the operator [ | -].
First, we can characterize the surreal numbers that have a representation of the form [L | R] with either L = & or
R=0o.

Lemma 3.1.8 ([26] Theorem 2.2]). Let L, R be two sets of surreal numbers. If R = & then [ L | R] consists solely of pluses.
Similarly, if L = @, [ L | R] consists solely of minuses.

Remark 3.1.9. Not that if L = R = &, the signs sequence of [L | R] may consist on solely pluses and solely minuses.
This means that the signs sequence if empty: It is O.

Since the sequences are of ordinal length, such numbers consists of an ordinal number of pluses and an ordinal number
of minuses. These kind of surreal numbers are naturally well-ordered and reverse-well-ordered respectively. Therefore,
we can identify them with the ordinal numbers and opposites of ordinal numbers respectively. At least as ordered
classes, this identification is trivial. However ordinal numbers come with some very nice operations such as the natural
operations (see Definitions[2.3.11]and[2.3.16). We will see in Section[3.2]that theses operations match the field operations
we can define on all surreal numbers.

Speaking about operations, since we have defined the sets No,, it would be nice to be able to bound from above the
length of surreal numbers we can build thanks to No,,. Of course No,, will never be stable under [ - | -] since by definition
[{x €No, | x <a} | {z € No, | £ > a}]is not an element of No,. However, we can have an explicit upper bound.

Lemma 3.1.10 ([26] Gonshor, Theorem 2.2]). Let L, R be two sets of surreal numbers. Let o the ordinal defined by
a=min{B€O0rd| Vo€ LUR |z|,_ <pB}. Then|[L| R]|,_ <o

The operator [- | -] is surjective and we can give a very special representation of each surreal number.
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Theorem 3.1.11 ([26, Gonshor, Theorem 2.8]). For all surreal number x, we have
r=[{yeNo|yCoAy<z} | {yeNo|yCzAy>a}]

The previous theorem gives a very compact representation of x. In particular, every left element and every right element
is simpler than z.

Definition 3.1.12 ([26] Gonshor]). For x a surreal number, the writing
{yeNo|yCazAhy<z}|{yeNo|yCaxAy >z}

is called the canonical representation of z.

3.2 Field operations

Definition 3.2.1 (Ring operations). Ring operations +, - on No are defined by transfinite induction on simplicity as
follows:

c+y=[2 +yx+y | 2" +yz+y"]
1 |

—z=[-2"| -2

Ty = [;c’y+9:y' 2y 2y oy — 2"y | 2y +ay’ — 2y 2y + 7x//y/}
where 2’ (resp. y’) ranges over the numbers simpler than x (resp. y) such that 2’ < x (resp. ¥’ < y) and 2" (resp. y"’)
ranges over the numbers simpler than x (resp. y) such that © < =’/ (resp. y < y”'); in other words, when x = [z | 2"
and y = [y | y"] are the canonical representations of = and y respectively.

Remark 3.2.2. The expression for the product may seem not intuitive, but actually, it is basically inspired by the fact
that we expect (z —2')(y —y') > 0, (x —2")(y—vy") >0, (x —2')(y —¥") <Oand (x —2")(y — y') < 0 whenever
¥ <z<z'andy <y <y’

3.2.1 Addition over surreal numbers

Proposition 3.2.3 ([26] Gonshor, Theorem 3.1]). For all surreal numbers x andy, x +y is well defined and for all surreal
numbers x,y and z,
r+y=y+zx and y>z = y+r>z+zx

The original proof uses an induction over the ordinal sum of the lengths.
Proof. Let «, 3,7 be the lengths of x, y, 2 respectively. We proceed by induction over («, 3, ) with the lexicographic
order, <j,, and use the following induction hypothesis:

x + y and x + z are well defined and + is commutative. Moreover, if y > z theny + 2 > z + x.

e Ifa=pp=~=0,thenz =y = z and « + y = 0 which is well defined and the implication holds since y > z
does not.

« Consider z, ¥, z of respective lengths «, 3,y and assume that for all u, v, t of respective lengths A, u, v, such that
(A v, ) <pex (o, B,7), the property holds. Note that 2’,2” T x and y/,y” T y. Therefore we can use the
induction hypothesis on (2/, y, ), (2", y, ), (x,y’, 2) and (z,y", z). Then the sets

rCx <z

L={2"4y,z+y
{ Y, Yy y’l:y y/<y

} and R—{x”+y,m+y”

'Ccx x<a
y”l:y y<y//

are well defined. We then just need to show that L < R. By induction hypothesis, we have

<1 = 2 +y<a’+y (3.1)
y<y' = 2 +y<a’+y’ (3.2)
¥ <z = 2 +y' <x+y”’ (3.3)
BINBI) = " +y<az+y” (3.4)
vy <y = z+y <z+y’ (3.5)
r<a’ = x+y <2’ +9y (3.6)
vy <y = 2" +y <2’ +y (3.7)
BOABTD) = z+y <2"+y (3.8)

sothat L < Rand [L | R]is well defined. Moreover, the definition of y 4 z gives exactly the same sets L and R.
Therefore, z +y = y + x. The very same proof with « and z ensures that « + z is well defined and v + 2z = z + «.

Assume now that y > z.
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> If z C y then x + z appears in the definition of y + z as a left element. Therefore y + x > 2 + z.
> If y C z then y 4 z appears in the definition of z + x as a right element. Therefore y + = > z + x.

> Otherwise, let d the longest common prefix of y and z (ie. d = [z | y]). Thend C y,d C zand z < d < y.
d + x appears in the definition of y + x as a left element, and in the definition of z 4 x as a right element.
Therefore z +x < d+z <y + z.

O

The addition operation is well-defined. However, the current definition is quite restrictive since it requires canonical
representations for x and y but does not ensure to provide a canonical representation as a result. This problem can be
solved by the fact that the addition is our first example of operations defined by the operator [- | -] that satisfies the
uniformity property.

Definition 3.2.4 (Uniformity property). Let n € N and F be a (possibly partial) function defined on the class of the
2n-tuple of subsets of No (Ly,..., Ly, Ry,...,R,) such that L; < R; foralli € [1; n], to the class of ordered pairs
(L, R) of subsets of No such that . < R. We say that F' defines a function f : No™ — No if an only if

(L,R)=F(L1,...,Lp, Ra,....,Ry) <= f([L1| Ra],...,[Ln | Ry]) =[L | R]

whenever for all i € [1; n], z; = [L;| R;] is the canonical representation of x;. The function F is said to have
the uniformity property if the above equivalence if valid if we do not require a canonical representation anymore.
By extension, we say that f has the uniformity property if there is some F' that defines it and that has the uniformity
property. When the context is clear, we shall not specify the function I’ and just say that f has the uniformity property.

Note that in the previous definition, nothing prevents the definition to be inductive. Note also that there may exist
several functions F’ that define the same function f.

Example 3.2.5. For instance, the addition is defined by the following class-function:

el

FLs T = ({o+ 81T Ry | TS

bo{esisimiz mey

" e€R

y'eT

Namely, ifx = [L | RJandy = [S | T] we indeed have F'(L, R, S,T) = x+y. As usual, 2’ stands for a typical element
of L, 2 for a typical element of R, 3’ for a typical element of S and y” for a typical element of 7.

Theorem 3.2.6 ([26] Gonshor, Theorem 3.2]). The addition has the uniformity property.

Proposition 3.2.7 ([26] Gonshor, Theorem 3.3]). No together with the operation + form an Abelian group with 0 as
neutral element.

3.2.2 Multiplication over surreal numbers

We now go on multiplication and we do the same work as for addition.

Proposition 3.2.8 ([26, Gonshor, Theorem 3.4]). For all surreal numbers x and y, xy is well defined and for all surreal
numbers x,y, a and b,
Ty = yx and (r>yANa>b) = ax —bx > ay — by

Proof. Let «, 3,7, d be the lengths of a, b, x, y respectively. We proceed by induction over («, 3,7, §) with the lexico-
graphic order and use the following induction hypothesis:

xy, ax,ay, br and by are well defined and x is commutative. Moreover, if > y and a > b then ax — bz > ay — by.

eIfa=pF=7=606=0,thenz =y =a =b=and ar = ay = bxr = by = 0 which is well defined and the
implication holds since = > y does not.

« Consider a, b, x, y of respective lengths «, /3, v, § and assume that for all u, v, w, t of respective lengths A, u, v, p,
such that (A, v, i, p) <jez (@, 8,7, p), the property holds. Note that ’, 2" T z and 3/, y”" C y. Therefore we can
use the induction hypothesis on (2', y, 2), (2", y, 2), (x, ¥, 2) and (z,y", z). Then the sets

2 T ' Cx
'y +axy — 'y r<x<a’ and R — 'y +zy’ —a'y” o <x<a’
x//y _"_ :L,y// _ x//y// y/7y/ E y f”y + :Eyl _ (I/.I/y/ y/7y// E y
y/<y<y// y/<y<y//

are well defined. We then just need to show that L < R. We have,
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2 >a Ny >y = 2"y—2"y >2y— 2y (by induction hypothesis)

'y -2y >y -2y = 2"y — 2"y +xy >’y — 2y +xy (by Proposition [3.2.3)

and x> Ny >y = ay — 2y >ay’ — 2y’ (by induction hypothesis)
xy — 2y >ay’ -2y = ay -2y +2y > ey’ — 2y + 2y (by Proposition [3.2.3)

Therefore, applying the associativity of + (c.f. Proposition [3.2.7), for all element element ¢ € L of the form

¢ =2'y+ xy’ — 2'y’, we have £ < R. Doing the same proof for elements of the form ="y + xy” — x"y" we

get that L < R so that [L | R] is well defined. Moreover, the definition of yx gives exactly the same L and R.
Therefore, xy = yz. The very same proof with a and = ensures that ax is well defined, as well as bz, ay and by
and that all these multiplications commute.

Assume now that x > y and that a > b.

> IfxCy:

. If a C bthen ay + bz — ax is a left element in the definition of by. Therefore ay + bx — ax < by.
Proposition together with associativity and commutativity of + (c.f. Proposition|3.2.7) ensure that
we can move terms from one side to the order using a minus. Therefore we get az — by > ay — by.

. If b C a then by + ax — bx is a right element of ay and again ax — bx > ay — by.

".» Otherwise, let ¢ be the longest common prefix of a and b. Then ¢ C a,b and @ > ¢ > b. By induction
hypothesis, az —cx > ay—cy and cx —bx > cy—by. Then ax > cx —cy+ay hence, ax > bxr —by+ay
and finally, ax — bx > ay — by.

> If y C z, we proceed the same way but using the cases of the definition of the multiplication we have not
used yet.

> Otherwise, let z the longest common prefix of  and y. Then z C «,y and x > z > y. By induction
hypothesis, ax — bz > az — bz and az — bz > ay — by. By transitivity, ax — bx > ay — by.

O
As for addition:
Theorem 3.2.9 ([26, Gonshor, Theorem 3.5]). The multiplication has the uniformity property.
Proposition 3.2.10 ([26] Gonshor, Theorem 3.6]). No with the operations + and X is an ordered commutative ring. The

neutral element for multiplication is 1.

3.2.3 Division over surreal numbers

Although the definition of the multiplication was much more complicated than the definition of the addition, the product
inverse is even more complicated. Actually, a lot of work is needed to do so. To successfully define a product inverse,
we handle a new operator (-) defined together with the product inverse as follows:

Definition 3.2.11. Letx = [0, L | R] be a positive surreal number in canonical representation. In particular, L, R >
We assume that the product inverse has been defined for y € L U R (i.e. for 0 < y T x). We define the product inverse
of z as follows :

« Start with () = 0.

« Foranyn € Nand y1,...,y, € LU R, assume (y1, ..., y,) has been defined, then set

(Y155 Ynt1) = (1= (= Ynt1) Y15+ Yn))

Yn+1

. Finally define
1 H@l’m’ym ’ [{i| y; € L}| € 2N } ‘ {<y1,...,yn> ‘ {i| y; e L} € 2N+ 1 H

T n €N neN

Remark 3.2.12. By induction, it can be shown that

n—1 n n
Wi =30 T~ | I @-w)
i=0 j:nﬂ'yﬂ j=n—i+1

!Note that if L = &, then L > 0. The same goes for R.
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1
Proposition 3.2.13 ([26| Gonshor, Theorem 3.7]). The product inverse is well defined over positive numbers and x— = 1
x

forall z.

Proof. We show it by induction on x. Note that we initialize the induction to 1 since 1 is the shorter positive element.

o If z = 1, the definition gives 1/1 = [0 | @] = 1 which is what is expected.

« Assume that the product inverse is well defined for all y C z such that y > 0. Consider the sets

{i] yi € L} € 2N
n<k

-

We show by induction on k that L, < 1 < xRy

} and Rk{<y17---7yn> ‘

{i| vy e L} € 2N +1
n<k

> Fork=0,Lo ={()} = {0} and Ry = &. In particular the property is trivial.

> Assume Ly < Ry for some k € N. Let 1, ...yr+1 € L U R. Note that

x
&Y Ykpn) = ——— (L4 (e = 2) (Yrs o 00) = 2 (W1, 0k) + (1= (Y1, yr)
Yk+1 Yr+1
Denoting A = z (y1, ..., Yx), then can write = (y1, ..., yrr1) = LA+ x (1=2X).
Yk+1
I (Y1, Yk+1) € Lkg1 and Y41 € R then (y1,...,yx) € Lg and /yp+1 < 1. By induction
hypothesis, A < 1. Therefore, = (y1,...,Yr+1) € { < ;1 ), in particular z (y1, ..., yp+1) < L.
Yk+1
I {y1,. .. Yk+1) € Lgt1 and yrp4q1 € L then (y1,...,yk) € Ry and z/yr11 > 1. By induction
hypothesis A > 1, hence we must have x (y1, ..., yk+1) < L.
I {y1,...,Yk+1) € Riy1 and yrr1 € L then (y1,...,yx) € Li and x/yp+1 > 1. By induction
hypothesis, A < 1. Therefore, « (y1,...,Yr+1) € (1 ; L ] , in particular © (y1, ..., ygt1) > 1.
Yk+1
I (Y1, ..., Ykt1) € Ri+1 and ypy1 € R then (y1,...,yx) € Ry and z/yrr1 < 1. By induction

hypothesis, A > 1, hence we must have  (y1, ..., yg+1) > 1.

By the induction principle, we then have x L, < 1 < xRy, for all £ € N. Therefore, we also have

xULk <1 <$URk

keN keN

Using Proposition [3.2.8|(its contraposition), we then have that |J Ly < |J Ry. In particular,

keN keN
1
; - |:{<y17ayn>

il yi € L} €2N

neN <y17"'7yn>
1

is well defined. We now compute x—. By definition, and using the uniformity property of the product (Theorem
x

1

,x— =[S | T] where
x

neN

Hilyie L} €2N+1 }]

3.2.9

2 Cx
¥ <z<az’
(z1,...,2p) € U Lg

keN
Jtp) (t1,...,tp) € U Ry
keEN

peN

1
x’;+x<21,...,zp>—x’<zl,...

1
x”;—i—x(tl,...,tp)—x”(tl,...

' Cx
¥ <x<a’
<21,...,Zp> S ULk

keN
<t17...,tp> S U Ry
keN

peN

1
=4 x (... tp) —a' (t1,...
x

and

1
z”;+x<zl,...,zp>fx”<zl,...
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Note that (z—2') (z1,...,2p) = 1—2'(21,..., 2zp,2’) and that (21, ..., 2p,2") € Ryyq forany (z1,...,2,) € L,
and 2’ C z such that 0 < 2’ < x. Hence, for 2’ # 0,

1 1
x’;—!—x(zl,...,zp)—x’(zl,...,zp>:1+:c’(;+1—<z1,...,zp,x’>)<1

andif 2’ =0, x’;er(zl,...,zp}fx'<zl,...,zp>::17<21,...,zp> <1

Similarly, we get all the other inequalities to ensure S < 1 < 7. The only prefix of 1 being 0 we now now that
[S| T) € {0,1}. But for ' = 0 and p = 0 we get that 0(1/z) + 20 — 00 is in S. Finally, [S | T] # 0 and

r— =1
T

Corollary 3.2.14. No with the operations + and X is an ordered field.
Remark 3.2.15. From a set theoretic point of view, No is not a field since it is a proper class. It would be more accurate
to say that No is a class field but for the sake of simplicity we omit this detail.

The previous corollary is the actual statement of [26] Gonshor, Theorem 3.7] whose proof is essentially the one of the
previous proposition.

In the previous proof, the fact that we were using the canonical representation of z is just hear to be able to define
properly the product inverse. Now that it is done, the very same work on any representationz = [L | R]with L, R > 0
gives again a definition for the product inverse. Therefore,

Corollary 3.2.16. The product inverse has the uniformity property in the following sense: For all positive x = [L | R]
such that L, R > 0 we have

1:[{@1)”.7%&’ {i|y¢EL}|€2N}‘{<y1’.”’yn>‘ |{i|yi€L}|E2N+1H

T n €N neN

3.3 Normal form

3.3.1 Interlude : Hahn series

Recall that a group G is divisible is for any n € N* and any g € G, there is some h € G such that nh = g. Given that,
let K be a field, and let G be a divisible ordered Abelian group.

Definition 3.3.1 (Hahn series [27]). The Hahn series (obtained from K and G) are formal power series of the form

5= des agt9, where S is a well-ordered subset of G and a4 € K*. We may also write s = ) a4t and say that S is
geG
the support of s denoted supp(s) = {g € S| a4 # 0} and the length of s is the order type of S = supp(s).

We write K ((G)) for the set of Hahn series with coefficients in K and terms corresponding to elements of G.

Definition 3.3.2 (Operations on K ((G))). The operations on K ((G)) are defined in the expected way, considering

them as formal power series: Let
- E g I E ! 49
5= agt and s = ayt
ges ges’

where S, S’ are well ordered.
s s+ =3 cqug (ag+ay)t?, wherea, = 0if g ¢ S,and ay = 0if g ¢ 5.

e 5.8 =3 cpbyt?, where T ={g1 +g2| g1 € SAgs €5}, and for each g € T, we set

by = Z bg, - bg,

91€85,92€5"|g1+92=¢g

Remark 3.3.3. Note that the operations are well-defined because of Propositions for addition and for multi-
plication. Namely, these propositions ensure that the set of exponents is still well-ordered.

It is common work to check that the operations defined above give K ((G)) a ring structure. It the same reasons why
polynomials with coefficients in K have a ring structure. However, we can go further: We actually have a field. We then
call the structures of the form K ((G)) Hahn fields.
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Proposition 3.3.4. K ((G)) with operations + and x is field and the product inverse is given by the following: For s =

>~ agt? with non-empty support S,
s€S

1 1 a e
= 7914 E E (_1)’C E Qlikgk 9
s ag, ~ g Ggo™
g€(S—go) | kEN 91,---,9k € S\ {go}
g1+ +gk—kgo=g

where g is the minimum element of S and (S — go) is the monoid generated by S — gg in G.

Proof. Let s = ) a4t? with non-empty support .S and go being its minimum element. We have that S — go > 0.
seS
Applying Proposition [2.4.5| (S — go) is well ordered. Therefore, for any g € (S — go), there are finitely many k € N

and finitely many ¢1,...,9x € S\ {go} such that g1 + --- + gr — kgo = ¢. That is, for any g € (S — go), the sum

a ...a
Z(_l)k } : gla kgk
ken= 91,9k € S\ {90} %
g1+ +gr —kgo=g

contains finitely many term and therefore is well-defined. Thus the element s’ defined by

1 a ..;a
el ERED I DI D DI =L
ago * a’go
g€(S—go) | kEN Gis-e s gr € S\ {g0}
g1+ +gk —kgo=g

is well defined and s’ € K ((G)). It remain to check that s's = 1.

ge(S—go) | kEN*
g1+ +gr—kgo=g

a cee Q@ ) a _
_1)k > 9171691& t9 <1 + 3 —9 49 90)
k

ss=11+ > (
91,9k € S\ {go} Qgo 9€5\{g0} %90
1

L'kagk v+ 99 4990
9€5\{g0} %90

=1+ > > (1)
g€(S—go) | kEN* 91,59k € S\ {90} Qgo
g1+ +gr —kgo=g

= RN etk D g L | [y e
g€(S—go) | ken~ gis- .., gr € S\ {g0} Ago geS\{g0} g0
g1+ +gr—kgo=g

Qg1 """ %gr | 49

— k

-1+ ¥ | ¥ - ]

g€(S—go) | kEN\{0,1} g1,---,9% € S\ {g0} 90
g1+---+gr —kgo=g

a .. .a
k g1 Gk+1
+ oy | ze > ol g
gE(S—go)+(S—go) | kEN* 915> 9k+1 € S\ {90} 9o
g1+ +grr1—(k+1)go=g

-1+ > | s > S
9€(S—go) | ken\{0,1} 91,--, 9% € 5\ {90} Qg0
g1+ +9gr —kgo=g

- ¥ S (-1 el L
9€(S—ga)\{0} | keN\{0,1} 91s- - gk € S\ {go} g0
gi+--+gr —kgo=g
=14 Z (_1)k ag, - 'kagk
keN\{0,1} g1, gk € 5\ {90} g0
g1+ -+ g —kgo=0
=1 (since S — gg > 0)

O
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Definition 3.3.5. Provided that K is ordered by <, the Hahn field K ((G)) can be given an ordering that extends < as

follows: Letx = > aqt? andy = ) byt?. Let T be longest common initial segment of S and S’ and
geSs ges’

. . 3 ! H !
gm{mm{965|g§éT} ifS#T and gy{mln{g€S|g¢T} ifS"#T

0 otherwise 0 otherwise

and

0 otherwise 0 otherwise

{agw ifS£T {agy ifS' £ T
Ty = Ty =

We set
e SOy Ay <1y
T<Yy <= C0r (gz,—Tz) <iex (gy,—Ty) A Ta,7y <0
or  (gu,7z) >iex (9y,Ty) N Tz,7y >0
Remark 3.3.6. This ordering give K ((G)) a structure of ordered field.

Remark 3.3.7. The definition of the order may seem quite complicated by if we writex = 5 agt9andy = > b,t?
gesus’ gesus’
allowing a; = 0 for g € S\ Sand by, = 0 for g € S\ S, the definition of the order actually become the usual

lexicographic order.

Hahn fields inherits a lot of from the structure of the coefficient field. In particular if K is algebraically closed, and if G
is some divisible (i.e. for any n € N and g € G there is some ¢’ € G such that ng’ = g) ordered Abelian group, then
the corresponding Hahn field is also algebraically closed.

Theorem 3.3.8 (Generalized Newton-Puiseux Theorem, Maclane [36]). Let G be a divisible ordered Abelian group, and
let K be a field that is algebraically closed of characteristic 0. Then K ((G)) is also algebraically closed.

Hahn fields are also ordered fields. When dealing with such field, one may often wonder if this fields are real closed. As
noticed in [1l], we can deduce from the previous theorem the following:

Corollary 3.3.9. Let G be a divisible ordered Abelian group, and let K be a field that is real closed (i.e —1 is not a square
and K(3) is algebraically closed) of characteristic 0. Then K ((G)) is also real closed.

Proof. K is real closed. That is to say that —1 is not a square in K and that K[¢] is algebraically closed. Notice that
K[i] ((G)) = (K((G)))) [i]. Therefore, Theorem 3.3.8] ensures that (K((G))) [i] is algebraically closed. Also, —1 is not
a square in K ((@)). Therefore, K ((G)) is real closed. O

As well as we defined No,, restricting the length od the surreal numbers, we can restrict the length of the series. We
then introduce

Definition 3.3.10 (Alling, [1]). K((G)), is set of elements from K ((G)) whose support as order type less than the
ordinal number .

K((G)), ={2 € K((G)) | suppz < A}

Notation. For the sake of readability, we may forget the parenthesis and use the notation K ((G)), = K. Finally, if
(Gi);c; is a family of Abelian groups, we also denote

K&Gi)iEI _ UKfl
iel

3.3.2 The w-map : Archimedean classes

We have introduced Hahn series in the previous section. Now we show that we can associate any surreal number with
such a series. More precisely, we will see each surreal number has a normal form that can be expressed as a Hahn series.

1
This series will match the Cantor normal form for ordinal numbers seen as surreal numbers. Namely, — will play the
w

role of the variable ¢ in Hahn series. To do so, we need to define what is w® for any surreal number a.
Definition 3.3.11. We define the following relations for a and b two surreal numbers:

« a =< b iff there is some natural number n such that n|a| > |b| and n|b| > |a|. We say that a and b have the same
order of magnitude.

« a < b iff for all natural number n, n|a| < |b|. We say that b a higher order of magnitude than a.

« a=biff a <borax b We say that b as at least the same order of magnitude as a.
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o a~biff a—b <1 Wesay that a and b are equivalent.
The following is immediate:

Lemma 3.3.12. The relation < is a preorder and < and < are the associated equivalence relation and strict preorder
respectively.

Now that we have defined an equivalence relation, we can wonder what are the equivalences classes and if there is a
“canonical” representative of each class. First, the classes are obviously, by definition, the Archimedean classes. Indeed,
two surreals are in the same class if and only if there is a multiple of the first one that is greater than the second one and
respectively. Now, for the “canonical” part, in our context, if there is a shorter surreal number in each class it would be
nice. In turns out that it is the case.

Theorem 3.3.13 ([26] Gonshor, Theorem]). For any non-zero surreal number a, there is a unique shortest positive element
x such that x < a. More precisely, ify < a andy > 0 thenx C y.

Remark 3.3.14. Note that we cannot require  to be the unique element with minimal length since —x is in the same
class and has the same length. However, if we ensure x > 0, we fully characterize the minimum element with respect
to the partial order C.

Proof. Let z < a be positive with minimal length. Let y > 0 such that @ < y, or equivalently < y. Let z be the longest
common prefix of  and y. Then z < x and z > 0 since both = and y are positive. By minimality of =, we have z = x
and therefore x C y. O

We now try to define explicitly the shorter positive elements of each class. We will index them with all the surreal
numbers.

Definition 3.3.15. We define for all z = [z’ | 2] in canonical representation,

wt = |:0, Riwll

Riwxﬁ}

An element of the form w” will be called a monomial.

Example 3.3.16. As an example, we immediately have w® = 1, w! = w.

Lemma 3.3.17 ([26, Gonshor, Theorem 5.2]). w® is well-defined for all surreal number x and for any x,y surreal numbers,
r<y = w'<w?

Moreover, © — w® has the uniformity property

Theorem 3.3.18 ([26l Gonshor, Theorem 5.3] and [18, Theorem 19]). A surreal number x is of the form x = w® if and
only if it is the shortest positive element in its Archimedean class.

Proof. @ Assume that z = w® and that y > 0 is such that y < z. By Lemma|[3.3.17, we have y < w®’ and Y > w®
when writing a = [a’ | @”] in canonical representation. Therefore 0, Riw“/ <y < w”". By definition of [- | ],
z Cy.

@ We proceed by induction on z. First, for x = 1, x = w" and the property is true. Now, let x be a positive surreal
number which is the shortest in its Archimedean class. Assume that for any y C z, if y is the shortest in its
Archimedean class then y is of the form w®¥. By minimality of z, forally T z,y < z ory > x. Applying
Theorem for all y C x, we get that for all y C x there is a unique z T y of minimal length such that
zy X y. By minimality of z, for all y C z, 2, = w®v for some surreal number a,,. Let

L={ay|yCz y<uz} and R={ay|yCz y>z}

We claim that . < R. Indeed, if there is ¢ € L and » € R such that £ > r, then w% < x < W < w®*. We then
consider a = [L | R]. Note that by definition, Lemma and more precisely the uniformity property,

w® = [O,RiwL | Rin]

Since 0, ]Rj_wL <z < Rj_wR, we then have w® C z. If w® # z, then a € L U R which is impossible. Therefore
T = w?.

O
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The previous theorem ensures that the w-map is a parametrization of all the canonical representative of each class. This
is our first example of surreal substructure that will be studied in Section This elements will be our fundamental
bricks to build the normal form of surreal numbers. Since we already announced that such a normal form must be a
generalization of the Cantor’s normal form, we may expect that w® as an ordinal exponentiation is the same as w® as
the w-map applied to the ordinal number « seen as a surreal number.

Theorem 3.3.19 ([26, Gonshor, Theorem 5.4] and [18, Conway, Theorem 20]). For all surreal numbers a and b, wwb =

Wt and for all ordinal v, w® as an ordinal exponentiation is the same as w® as the w-map applied to the ordinal number
« seen as a surreal number.

3.3.3 Normal form for surreal numbers
Having defined the w-map, we now define formal power series thanks to the monomials w®.

Definition 3.3.20 ([26, Gonshor, page 59]). Let (a;),_, be an ordinal-length decreasing sequence of surreal numbers

1<V

and (7;), ., be non-zero real numbers. We define by transfinite induction :
o Y orw* =0
i<0

o« fv=v'41then > rw® = Y rw® 4+ ryw®’
1<V i<v’

« If v is a limit ordinal then

. v vV <v _ vV <v
a; __ a _ a,s . ai . a,r
St = H}jnw v e | LR } {ZW HCRL R Y }

i<v i<v! <v!

Ifz = > rw*, we will call this writing the normal form of . An element of the form rw® with @ € No and r € R
i<v
will be called a term. In particular, a monomial is a term. Finally if x = » r;w® we denote v(z) = v the length of the
i<v
series in the normal form of z.

Proposition 3.3.21 ([26, Gonshor, Theorem 5.5]). The writing > r;w® is well defined for all ordinal-length decreasing
i<v

sequence of surreal number (a;),_,, and for all non-zero real numbers (r;) Moreover, forallv' < v,

i<V i<v’

g riw® — E riw® < w9 = j <
i<v <v’

Finally, looking these elements as members of the Hahn field R ((No)), the function Y r;w® +— > r;t~% is an ordered
<v i<v
set isomorphism. In particular, the ordeﬂ for Hahn series as in Deﬁnition corresponds to the order of surreal numbers.

We now show that this writing is a normal form for all surreal numbers. To that purpose, we state the following technical
lemma:

Lemma 3.3.22 ([26, Gonshor, page 63]). For all ordinal-length decreasing sequence of surreal number (a;), ., and for all

Sorw®

i<V

> v
+7

non-zero real numbers (r;)

i<y’

Proof. By definition, we can see that rw C r;w® whenever v’ < v. The result simply follows by induction. [
y ply y
<v’ <v

As expressed by Gonshor, this lower bound is not accurate at all and we can do much much better. However, its is

sufficient for now.

Theorem 3.3.23 ([26] Gonshor, Theorem 5.6] and [18] Conway, Theorem 21]). Every surreal number can be uniquely
expressed in the way x = > r;w®.
i<v

Proof. Assume that x cannot be written is that way. We define z, = >_ r;w® for all ordinal « as follows:
i<a

2 Actually, Gonshor stated that the order was the lexicographic order over the pairs (a;,7;), which is true if and only if the r;s are positive. For
instance —w < 1 but the respective pairs are (1, —1) and (0, 1) so that (1, —1) > (0, 1). What suggests Gonshor remains true if the r;s are allowed
to be 0 in the sens of Remark
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o(L’O:O

« If « = 8+ 1, ag be the unique surreal number such that w® =< x — zg. It is given by Theorem [3.3.18 Let
rg=sup{r €e R| x —zg —rw* > 0}. Thenz — x5 ~ rgw?. Set o = x5 + ragw?s.

« If o is a limit ordinal, just apply the Definition[3.3.20]to get .
By Lemma ‘ |za|,_ > a for all ordinal c.. On the other hand, by definition, for all limit ordinal o,

. vV <v _ vV <v
. Qi _ Q1 Qi @y,
Ty = [{ E riw® 4 (r, —e)w ceR: } ‘ { E rw® + (ry +e)w ceR" }

i<v! i<v!

and by definition of sup,

{ Zriw‘“ + (ry — g)w’

<v’!

vV <v a o,
ceR: }<x<{2mw + (rv +e)w

i<v’!

vV <v
e e Ry
Therefore, by definition of [ | -], we have 2, C x. Hence,

Yo € Lim a<|zal,_ <zl

which is obviously a contradiction.
Now, for uniqueness, using Proposition [3.3.21] the ordering of surreal number coincides with the order over the Hahn
series. Therefore, two distinct series cannot represent the same surreal number.

O

The normal form is also very convenient to handle operations. Indeed we have:

Theorem 3.3.24 ([26, Gonshor, Lemma 5.5, Theorems 5.7 and 5.8]). The function > r;w® +— > r;t~% is an ordered
i<v i<v

field isomorphism.

The previous theorem gives us a new way to see surreal number. Indeed, as the operations can be performed in a formal

way, we can use usual algebra with surreal numbers. In the following chapters, we will be particularly interested in

using this form of the surreal numbers.

Remark 3.3.25. Let \ be an e-number. We see it as a surreal number. The normal form of )\ is w”, is other words, ) is
already in normal form.

Looking at the normal form enables us to consider some special cases:

Definition 3.3.26. A surreal number @ in normal form a = Y r;w® is
1<v
« purely infinite if for all i < v, a; > 0. f K C No is a subfield of No, we denote K, the set (or class) of purely
infinite numbers in K. We also denote K7 the set (or class) of non-negative purely infinite numbers.

« infinitesimal if for all i < v, a; < 0 (or equivalently if a < 1).
- appreciable if for all ¢ < v, a; < 0 (or equivalently if a < 1).

If ' < v is the first ordinal such that a; < 0, then ) 7;w® is called the purely infinite part of a. Similarly, if v/ < v
i<v’
is the first ordinal such that a; < 0, > r;w® is called the infinitesimal part of a.
v/ <i<v

From Gonshor’s arguments, when looking at the signs sequences, a purely infinite number is is a surreal number x
of limit ordinal length such that for all ordinal «, if the sign z(«) exists, z(a + 1) = z(«), that is, no minus follows
directly a plus and respectively. An infinitesimal number is such that it start with either (4+)(—)“ or (—)(+)%. Finally,
an appreciable number is such that it starts with a finite number of pluses or a finite number of minuses.

3.3.4 Signs sequence and normal form

We have introduced the normal form, we now explain how to effectively get the normal form from the signs sequence
and conversely. In [26], Gonshor shows how to get the signs sequence from the the series expression. More precisely,
if we are given the signs sequences for the exponents and coefficients, he provides a procedure to get back the signs
sequence.
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Definition 3.3.27 (Reduced signs sequence, Gonshor, [26]). Let z = > 7;w* be a surreal number. The reduced signs

i<v
sequence of a;, denoted a; is inductively defined as follows :
. a(o) = aop
« Fori > 0,if a;(§) = — and if there is there is j < ¢ such that for v < 6, a;(y) = a;(), then we discard the minus

in position § in the signs sequence of a;.

« If i > 0 is a non-limit ordinal and (a;_1)_ (as a signs sequence) is a prefix of a;, then we discard this minus after
a;—1 if r;—1 is not a dyadic rational number.

a; is the signs sequence obtained when copying a; omitting the discarded minuses. To give an intuition about what
is going on, we forget the minuses that have already been treated before. We just keep the new one brought by a;
expected when this minus is implicit: If a; T a;1, then, since the sequence must be decreasing, we already know that
a;(—) C a;; The first new minus does not bring any information and can be discarded for “simplicity”.

Theorem 3.3.28 (26, Gonshor, Theorems 5.11 and 5.12]). For a surreal number a,

« The signs sequence of w® is as follows : we start with a plus and the for any ordinal o < |a| we add w!elell++1
occurrences of a(c).

« The signs sequence of wn is the signs sequence of w® followed by w!®+ (n — 1) pluses.
1
e The signs sequence ofw“z—n is the signs sequence of w® followed by w!®!+n minuses.

« The signs sequence of w®r forr a positive real is the signs sequence of w® to which we add each sign of r w!®!+ times
excepted the first plus which is omitted.

e The signs sequence of w®r for r a negative real is the signs sequence of w*(—r) in which we change every plus in a
minus and conversely.

« The signs sequence of S rsw® is the juxtaposition of the signs sequences of the w® r;
i<v
We can give the transformation in the other direction. It will be very convenient to be sure that theses point of view are
computationally equivalent. The procedure is given by Algorithm [2] By construction, the series that it returns admits
the input signs sequence as a signs expansion. By uniqueness of both of the writings, the algorithm is correct. It uses
the procedure of un-reduction given by the Algorithm i}
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Algorithm 1 Un-reduction : unReduce(a,A,R)

Inputs : a, a signs sequence, A, R lists of exponents and coefficients

Require: A be a decreasing sequence
Require: A and R have the same length |A| = |R)|

Ensure: The returned value, y is such that a = 3° in the context of the reduction of exponents in > R[iJwAl 4 w¥

10:

15:

20:

25:

i+ |A]
I =min{a| a(a) = —} (= |a|  _ if empty)
a;1 < afl ]
if ¢ is a limit ordinal then
FEe{a|3j<i VB<a Wi<k<i ARK)(S)=ALA)
forall « € E do
jot-min{j|VB<a Vi<k<i AR(S) =AU}
auz(a) — Alja](@)
end for
if aux has a prefix such that its “+”s have order type [ then
u <—longest prefix of aux such that its “+”s have order type [
return ua; 1
else
return auw(+)l—orderType("+”s of aul)ai,l
end if
else

!

a;_, <—shortest prefix of A[—1] such that its “+”s have order type [
b= |a§_1 |+_
g=min{a >p| A[-1](a) # -}
m; =q—p
if A[—1](q) does not exists and R[—1] is not dyadic then
n; +—m;+1
else
n; < m;
end if
return a;_,(—)"a; 1
end if

i<|A

> We have a = (+)'a; 1.

> Concatenation of strings

> Concatenation of strings

> A[—1] is the last element of A
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To show the correctness of Algorithm [1] we state the following:

Lemma 3.3.29. Let (a;); be a decreasing sequence of surreal numbers and (r;); be real numbers. Then for every i, a; is of
the form of a concatenation a; oa; 1 such that every “—” of a; o is discarded and none of the ones of a; 1 and such that a; ¢
is maximal for this property (that is a; 1 does not starts with a “4”).

Proof. If the minus in position 0 is discarded by some a; with j < 4, then if there is a minus in position ¢’ < ¢, it must
be discarded by the same a;. If the position § was the last position of a;, then a; = a;_;— and so a;_; discards the
minus in position ¢’. O

We then have immediately the following corollary.

Corollary 3.3.30. Let (a;); be a decreasing sequence of surreal numbers and (r;); be real numbers. For every i we have
o

al = (+)ta; 1 with (+)' being the maximal prefix of a$ containing only pluses.

7

Corollary 3.3.31. Let (a;); be a decreasing sequence of surreal numbers and (r;); be real numbers. Let a; , be the the
smallest prefix of a; o such that the order type of its “+”s is l;. There is n; an ordinal such that a; o = a; o(—)"".

Lemma 3.3.32. Let (a;); be a decreasing sequence of surreal numbers and (r;); be real numbers. Let i be non-limit. Write

ai—1 = aj_(—)™aj_, where the “+”s of aj_, have order type l; and a;_, does not start with a “~" Then a}, =
o _— { m; +1 ifa,—1 =a,_1(=)™ andr;_1 is not dyadic

-1 m; otherwise
Proof. Since a; < a;—1 we need a,_; to be a prefix of a;. Otherwise, if b is the longest common prefix, and is shorter
thana)_;,a;—1 =b+--- anda; = b — --- and so the “—” after b must not be discarded and we get a contradiction.
Then, at least a; must be written a; = a}_;(—)™*1 ... The last “—” may be discarded if and only if a; 1 = a}_;(—)™
and 7;_; is not dyadic, in the case n; = m; + 1. Otherwise it is the first term of a;, and n; = m;. O

Lemma 3.3.33. Let (a;); be a decreasing sequence of surreal numbers and (r;); be real numbers. Let i be a limit ordinal.
Lt E={a|3j<i VB<aVj<k<i ar(B)=a;(B)}. Then E is a transitive set of ordinals. For oo € E denote j,
the least ordinal that proves a € E. Let a] o(a) = a;, () for @ < sup E. We have to cases:

* aj o has a prefix such that its “+”s have order type l;. Then a; ¢ is the longest such a prefix.
* Otherwise, ajl is a prefix of a; o and a; o = a;-fo(—i—)li‘ with I} such that the order type ofa;f0(+)l; isl;.
Proof. E is obviously transitive, if j proves a € E then for 8 < «, then j also proves o € E.

« Assume a;/, has a prefix such that its “+”s have order type /;. Let u be such a prefix that maximizes the length.
Let v the longest common prefix to u and a; . If it is shorter and a; ¢ then, a; o = v(+)k for some ordinal k£ > 0.
Indeed every “—” in a; o must be discarded and a “—” after v cannot be discarded by any a;. Moreover the “+”s
of v cannot have order type l; since k > 0 then w = v — - - - thatis a; o > a; for some j < ¢ and then a; > a; for
such a j, what is impossible. Then v = a; . That is a; o is a prefix of u. Since there “+”s have same order type
there is some ordinal k such that u = ai,o(—)k. Assume k > 0. Then a; ; must not be empty otherwise for some
j < i we would have a; < a;. Then q; ; starts with a “—” that will be discarded what is again a contradiction.
Then u = a;.0-

+ Assume a , does not have such a prefix. Let u the longest common prefix of a; o and a ;. If it is shorter that a;/,
then a;fo =u+---anda; o =u—--- (a0 is not finished because the order type of the “+”s of 7 is less than [;),
otherwise there is some j < ¢ such that a; < a,. But then the first “—” in a; ¢ after u cannot be discarded. What
is a contradiction with the definition of a; o. Then u = a . Since we cannot discard any “~” further we have

/ .
aio = a/y(+)% for some ordinal I/.
O

Proof of correctness of Algorithm[l] Corollaries|3.3.30|and[3.3.31]identifies where we have to find the discarded minuses.
Lemma/3.3.33|ensure that the case when A has length a limit ordinal is correct and Lemma|[3.3.32|provides the successor
ordinal case. O

Then, the following algorithm performs the computation of the series from the signs sequence:
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Algorithm 2 Computing the series

Input : s a sign expansion

a0 > counter for position in the sign expansion
B+ 0 > counter for the position in the serie
AR+, > Initialize the list of exponent and coefficients to the empty list
5: loop
’I'Lb+ 0
a< () > Initialize a to the empty string
r— + > By default r is positive
p,m < +,—
10: if s(a) = — then > If we are looking at an w®r with r < 0, we switch the roles of 4 and —
p,m=—, +
r4— — > We also know that r starts with a —
end if
Identifying w® :
15: loop
if p"?+*1 is a prefix of s[a :] then
a < at

a—a+nby+1
nby < nby +1
20: else
if m"’++1 is a prefix of s[c :] then
a4 a—
a+—a+nby +1
else
25: Break
end